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GENERAL INTRODUCTION

The successful prediction of the performance of a new or modified
aircraft depends as much on the availability of an accurate estimate of
the configuration's {ift and drag characteristics as on any one thing.
Despite the importance of t+his task, the procedure used in the light
aircraft industry and that taught in most universities has remained essen-
tially a semi-empirical correlation of wind tunnel and flight test data
plus a collection of useful rules of thumb. The major airframe manufac-
turers and their cognizant governmental laboratories have for some time
sought both To reduce the time needed to develop these predictions and tfo
increase their accuracy and reliability through the use of laraqe-scale
digital computers. Employing long=-known, highly rigorous analytical
computation methods which become too involved when applied *o complete
aircraft for one to perform manual ly, fthese groups have, within the lasT
three-to-six years, achieved some remarkable successes In predicting the
aerodynamic characteristics of complex geometric shapes.

it is the intention of the present work

- to review analytical and experimental developments 1n aerodynamics
of the past 32 years, in particular those of the Naticnal Aeronautics
and Space Administration,

- to identify those of special pertinance to the design of light
aircraft and

- to develop from these easy-to-use design procedures.

0f necessity fhese procedures will involve digital computer programs. This
approach follows that employed in earlier works in this series. Reference 1,
for example, provides detailed computer programs for the prediction of point
and path performance assuming that the Iift, drag, and thrust characteristics
are known. References 2 and 3 give programs for the calcdlation of stabiiiTy
derivatives and aircraft motions given the vehicle's gecmetric and inertial
characteristics. Thus with these and the present work The reader can specify
the aircraft geometry, mass distribution, and thrusT applied fo the air and
expect to obtain the vehicle's performance and its handling qualifies. He
can then vary the geometry, etc. in a systematic fashion and find the shape
giving the mosT satisfactory combination of performance and hancling qualities.

While the availability of these programs will certainly be of greaf
assistance in the overall design fask, it should be noted that many areas of
aircraft configuration design have not been +reated in detail or have not
been programmed for computer solution in the work to date. These include
large excursions in the motions about an equilibrium position, performance
in the horizontal plane, takeoff and landing, aerodynamic characteristics
at high angles of attack and/or with deflected flaps, flight in turbulent
air, calculation of stick and rudder forces and deflections, propelter

slipstream effects, adequate representations of thrust horsepower and fuel



flow, and the effects of specific stabillty augmentation systems. It Is

the authors' ultimate intention to treat all of these problems in the manner
of the programs included in the present work. Theziﬂgp#&, however, be
pleased to receive suggestions from readers and usefs of the work as to the
priority with which the problems should be attacked.

The present work depqatﬁ‘ﬂ:m1The practice of previous works In this
series in that the computer programs presented are usually modifications
(generaliy simplifications) of elaborate programs in use at government
facilities rather than original efforts. This was done to take advantage
of the rather substantial effort which went Into the preparation of these
programs. Each program which was used has shown good agreement with
experiment in at least a Iimited number of cases. Such a practice also
has a number of disadvantages:

1. The avallable documentation Is usually very sketchy and frequently
inconsistent with the program statements and/or logic. As a
result it Is very difficult to determine in detall the method
on which the program is based and +he validity and/or applicabllity
of the methods.

2. The programs usually contain many more options than are needed
for the present purposes. I+ Is often difficult to unravel the
program to the point that these unneeded options can be removed
successfully.

3. The programs are usually written to take advantage of the char-
acteristics of a particular machine whlch limits their transfer-
ability to other machines.

4. In every case the programs are written for very large machlines.
Smaller machines generally have Insufficient storage capaclty
even to compile the programs. In order to use them on smaller
machines one must devise a means of splitting a program into
several parts or employing a form of virtual storage.

The present work represents an effort at overcoming these disadvantages.
I+ begins with a review of the literature on the estimation of |if+ and
drag characteristics of wings, wing-bodies, and complete aircraft confligu-
rations. Among those treated in this discussion are a group of government
reports which describe computer programs for performing various portions
of this estimation task in a rapid but accurate manner. Several of these
programs appeared to offer a sufficlent reduction in the cost of estimating
the aerodynamic characteristics of new or modified deslgns that It seemed
desirable to adapt them for use with I1ght aircraft, the computer capabl|itles
of this industry, and as an instructional device for fledgling deslgners.
For these reasons, those portions of the programs dealing with the effects
of flap deflections have been removed. The modified programs are therefore
more applicable to the hlgher speed portions of the flight profile. Studles
are currently underway of means for Including the computation of these
effects with reasonable additional computer requirements.,



In the next section of the work the theoretical bases of the recommended
programs are discussed starting from first principles. It shoutd be empha-
sized that the methods described are not always exactly those used by the
computer programs. The approach to the problem is usually the same but
the details are frequently quite different. This has been done because,
as noted above, the details of the methods actually used are obscure, at
jeast to the present authors, and because a different treatment was regarded
as being easier for those approaching the area for the first time to
understand.

. Following this discussion is a review of the changes in the programs
lnsTrugTions for their use, and some samplie results. |Included also are ’
append!ces providing local ly-written computer programs found useful for
producing analytical check cases, simple approximate solutions fo more
general computations, or extensions of the range of the major programs to
other speed regimes.

The present work is intended to serve several needs. Its primary
function is to provide the practicing light ajrcraft designer with a
powerful tool for reducing the engineering labor needed tfo develop a new
airplane or revise an existing one. Hopefully, it is written at such a
level and in sufficient depth that the user will be able to gain an under-
standing of the limitations imposed on the attainable accuracy by the choice
of physical and mathematical models as well as an appreciation for the new
capabilities provided by the programs and Instructions for their use. By
keeping the mathematical sophistication required for comprehension fo a
minimum and by emphasizing physical descriptions of the means by which flows
over aircraft are represented, it is hoped that undergraduate aeronautical
engineering students will also $ind the work both helpful and illuminating.
|+ seems unfortunate that because of time limitations, a lack of technical
maturity on the student's part, and a reluctance on many educators' part
to depart from traditional practice, flight vehicle design is still taught
largely as a semi-empirical art rather than as the near-science which it
has lately become. Perhaps with the aid of these more powerful less
+ime-consuming tools the student can now successfully complete more real-
istic design problems during his undergraduate education.






LITERATURE REVIEW AND THEORETICAL

BASIS OF COMPUTER PROGRAMS



LITERATURE REVIEW

INTROCUCT | ON

Given the task of creating an entirely new airplane, the designer will
usually seek to devise first a wing geometry and, ultimately, a whole
airplane geometry that

1. provides the required Iif*t

2. has suitable stall characteristics

3. has minimum drag for good performance

4, has good stability and control characteristics
5. meets structural reguirements

6. is easy to build.

He will usually select a configuration that satisfies the last two obiectives
reasonably well and then attempt to determine how well the configuration
meets the other objectives. He recegnizes that he need not calculate the
aerodynamic forces acting on the vehicle with great accuracy in order to
determine the flying quatities. On the other hand, if he is to predict

the craft's performance with reasonable accuracy, he must know the |ift

and drag as precisely as possible.

From the viewpoint of designers active during the early years of this
century the analysis process was very i!l-defined. One did not then even
know how much wing he should provide or what shape to make it in order
to insure that his aircraft would fly. Being able to estimate how fast
or how far his craft might go seemed a matter of secondary concern to the
more urgent problem of how much |ift is associated with a particular geometry.
A systematic study of this problem would seem to begin with consideration
of the 1ift developed by a slice or section out of the wing. Modeling the
problem in this fashion has the advantage that one need consider only flow
in two dimensions rather than in three, a great mathematical simplification.
Further it would seem reasonable to assume that the fluid is inviscid if
for no other reason than to take advantage of the extensive analytical studies
{(particularly those of Helmholtz (Ref. 4) and Kirchhoff (Ref. 5)) that had been
carried out for this case during the nineteenth century. These studies had
been successful at explaining several experimental facts and present far
less mathematical difficulty than one would encounter working the more
general equations for the flow of a viscous fluid formuiated by Navier and
by Stokes about 1840. A good account of much of this work may be found in
Lamb (Ref. 6).

The immensity of the problem facing.engineers in 1900 trying to devise
a rational means of calculating wing lift can be better appreciated when



one realizes that in the contemporary view |ift was the force reacting to
the change in the momentum of the airstream striking the inclined lower
surface of wing. Such a force would be proportional to sin? o where o 15
the angle by which the jower surface is inclined fo the wind. | f one were
to assume that a wing is flying af f{1fty miles an hour with o = 6%, then
it could develop about 0.0635 pounds of |ift per square foot of surface,
according to this fheory. Since 1t was then impossible 1o build & wing
{ighter than this weight, many scientists confidently predicted that man
would never fly. More preceptive individuals noted however that The
flight of gliders could not be explained by such small values of 1ift

and therefore something mus?t be wrong with the theory.

THE AIRFOIL IN INVISCID FLOW

Lord Rayleigh had shown in 1878 that the swerving flight of a "eut!
tennis ball could be explained at least in general terms by comparing it 1o
the case of a cylinder placed in an inviscid uniform stream. By superposing
a circulatory flow upon the cylinder, the cylinder developed a force normal
to the direction of the uniform stream, directly proportional to the strength
of the circulatory flow. This result along with the earlier work of Helmholtz
and Kirchhoff was known to the German mathematician M. W. Kutta who was
interested in why cambered airfoils produce lift at a = 0. In a 1902 paper
(Ref. 7) he studied a thin airfoil formed by a circular arc. He conc luded
that the only reasonable assumption one could make in view of what was
known physically was that the flow velocity over the upper surface was
equal to that over the lower surface at the trailing edge. The flow wou ld
therefore leave the surface smoothiy at finite velocity. He was willing
to accept the idea of an infinite velocity at the sharp leading edge, a
situation studied by Helmholtz, in order to obtain an approximafe solution
for the lift. Von K&rmén (Ref. 8) gives a highly readable account of fhis
early work.

Joukowski (Ref. 9), working independentiy along somewhat parallel
lines, was able to obtain exact solutions for a certain class of airfoils
in inviscid flow. He first showed that when a cylindrical body of arbitrary
cross-section moves with velocity, V, in a fluid whose density is p and
there is a circulation of the magnitude, T, around the body, a force is
produced equal to the product pVI per unit length of the cylinder. The
direction of the force is normal both to the velocity, V, and the axis of
the cylinder. Joukowski also assumed the flow fo leave the airfoil smoothly
at the trailing edge. By means of this hypothesis the whole problem of
1ift becomes purely mathematical: one has only to determine the amount of
circulation so that for zero vertex angle at fhe trailing edge the velocity
of the flow leaving the upper surface is equal to the flow leaving the lower
surface. |f the fangents to the upper and lower surfaces form a finite
angle, the trailing edge is a stagnation point.

Joukowski then found a transformation, ¢ = z * c?/z, by which a circle
in the z-plane becomes an airfoil in the g-plane. See the following sketch.
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According to the transformation, a point represented by z = x + iy in the

X,y plane is moved to a different location in the &,n piane. In the process,

all the other points in the plane are moved in such a way that the figure
of a circle in the X,y plane becomes an airfoil in the £,n plane. Under
Joukowski's transform the shape of the airfoil may be changed to a
considerable extent by moving the center of the circle (originally at 0)
to some other location M while keeping the point at which the circle
crosses the x-axis in the left hatf-plane at B. To see how this happens
it is instructive to carry out a sample calculation.

The general equation of a circle is of course

(x - x)? + (y - y1)? = a?

2 _ 2 _ 2
where x; = a cos B- c=3__7C° - m®
2C
y; = asinB
in the notation of the sketch. For simplicity one may assume that in this
calculation B = 0. Then

[x = (@ -C)J% + y2 = 42

or y = Y2(a - C)x + 2aC - C? - x?
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Substituting values for x* + y2 and y into this expresion yields

CZ
= 1 +
bEx ( 2aC - C? + 2x(a = c))

c? :
i - V2(a - C)x + 2aC - C% - x*,
T (1 2aC - C% + 2x(a - C) ) 2(a 8 @

Since a and C are arbitrary numbers, choosing x completely specifies the

value of ¢. For example, let C = 1 and a = 1.1. For this special case
the previous equation becomes
- S B : -\ 3
c‘_x(1+1,2+0.2x)+'(]—1.2+0.2x) 1.2 + 0.2x - x

The equation is easily evaluated and the results presented in tabular form.
The table below may be extended to determine the shape of the resulting
figure more accurately, if desired.

X g n
1.2 2.035 0.

] 1.707 +.1855
1. 1.707 -.1855
0.5 0.885 +,236
0.5 0.885 -.236
0 0. +.182
0. 0. -.182
-1. -2. 0.

Even from this limited set of numbers, however, it is apparent that for
these values of a and C the circle maps into a symmetrical airfoil-like
figure of high thickness-to-chord ratio. Moving M to the right increases
airfoil thickness while moving M in the y-direction adds camber to the
airfoil. Note that the airfoil chord is approximately 4C. Note also that
point A becomes the leading edge of the mean camber line and point B the
trailing edge of the airfoil under the transformation. When the angle of
attack is changed, the flow strikes the airfoil from a different direction,
To represent this situation, the strength of the circulation must be changed
so that as far as the flow over the cylinder in the x-y plane is concerned
the forward stagnation point has moved to some new location obtained by
rotating the line MA through an angle &, o being positive when A moves down
(y becomes negative). The location of the rear stagnation point must, for
reasons pointed out in the next chapter, remain fixed during this operation.



Since the transformation is conformal, the fluid velocity and pressure
which exist at any point on the surface of the cylinder can be related
quantitatively, as indicated below, to those which exist at the corresponding
point on the airfoil. Integration of these pressures in fthe direction nocrmal
to the free stream velocity then gives the airfoil |ift (which is also the
same as the |ift produced by the generating cylinder).

For the cylinder, the surface velocity components are given by

C
i

V cos all - cos 208) + sin o sin 206 ] + 5%17
a

I'x
2

<
(

= Vlcos a sin 20 - sin a(l - cos 20) . -
2na

while the surface pressures are given by

_ _Bf 2
PCIRCLE = TSTAGNATION ~ 2 (“ tv )

Here 8 is the angular l|ocation of the point of interest on the surface
measured from the negative x-axis. Hence x = a cos 6 and y = a sin 6, One
may use these values in the procedure outlined above to find that location
on the airfoil corresponding to 8. The velocity on the airfoil surface is
simply the velocity at the equivalent point on the circle times )dz/dcl.
From the transform

dz

dz

z
- C%/z

_ 1
- ‘l - C%/z° z

_ 1
- Idc/dz

thus the airfoil surface pressure is given by

z

z - C%/z

_ _Pf 2
PairFoIL T PsTagNATION ~ 2 (“ tv >

IT is interesting to note that while the Theory places no Iimit on
the magnitude of T, a value greater than I' = 2nVa means that the front
and rear stagnation points have come together and are moving away from the
circle atong the ray 6 = -m/2, clearly a physically impossible situation
since it would mean a strong cyclonic flow was present about the airfoil.
in actual cases I seldom exceeds mVa/4.

The Joukowski fransform technique was a great step forward in analyzing
the |ift of airfoils. |t gives the correct variation of |ift with angle of
attack and predicts |ift values which are very close fo measured values at
the same angles of attack. Unfortunately the Joukowski tfransform techniques
also had a number of disadvantages:

1. It is an inverse technique, that is, one does not know beforehand
precisely what the airfoil will look like. As a result it is
difficult to use the technique to estimate the characteristics
of a given airfoil.
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2. 1t leads always to an airfoil with a cusp at the trailing edge.
This is impractical structurally.

3. |t leads to airfolls which have their minimum pressure point very
far forward. Consequently, they have thick boundary layers, and
therefore higher drag and lower maximum |ift values than airfoils
with The minimum pressure point further att.

4. Being an inviscid ftheory, i1 cannot be used ToO estimate either [if?t
characteristics near stall or drag values.

5. It is tedious fo defermine the ordinates of the airfoil accuraTely."

These deficiencies were 500N recognized and many investigators set
about devising more general franstorms which could be used to represent a
greater variety of airfoils, in particular t+hose with finite trailing edge
angles. Kérmén and Trefftz (Ref. 10), von Mises (Ref. 11), Miller (Ref. 12),
and Theodorsen (Ref. 13) were among the leaders ‘n this effort, which by
19372 had reached the point where one could determine the 1ift characteristics
of a great variety of airfoils. The great effort required to complete a
calculation, however, discouraged thoughts of a further generalization in
the transform fechnique. The following outline of Theodorsen's method will
indicate the labor required.

The transform or mapping function is built up in Two stages; in the
first the airfoil profile in the z-plane is mapped info a confour in the
g'-plane through the use of the Joukowski +ransformation

|+ {s desirable That the contour in the z'-plane be as close to a circle as
possible; for this reason The axes in the z-plane should be chosen with a
view foward producing that result. This means that the airfoil should be
distributed as near like an ellipse as possible with respect fo the axes in

the z-plane.

The second stage consists of finding a mapping function which will
transform the near-circle in The z'-plane to an exact circle in the z-plane.
Theodorsen used the transform

> C

where the coefficients Cp, complex in general, have to be determined.
A point on the near or pseudo circle in the ¢'-plane is given by
z' =C e¥(0) o0

The factor ew(e) determines how much +he contour in the g'-plane departs from
that of a circle. The relationship between points on the airfoil and polnts

11



on the pseudo-~circle is given by the equations

X 2C cosh Y cos §

y 2C sinh Y sin 8

These two equations can be put into the form
2sin28=p+ [P2 + (%)2] 12

2 sin2 (@) = —p + [bz + (%)2] vz

where < \z 2
which establishes the function Y(9),

Theodorsen describes a point on the exact circle in the g-plane by
the equation

T = Ce‘POe'¢ = Rei¢
where Yo is a constant not yet determined. R is, of course, also a constant.

The relationship between points on the pseudo-circle and those on the
exact circle Is given by

(8) 16 0
Cew e " _t¢' o
Cewoeie 4 =P (; Eﬁ)

Setting Ch _An*+ 1B, A+ 1B,

n zn RN
and equating real and imaginary parts one obtains

e—ind

LA

(o]
Y- Py = 2 ;—n (Apcos ng + Bpsin ng)
n=

0 -¢ = 2;—”(8,1cos nd)-ﬁhsin ng)
n=

From these i+ fol lows that



2T
o == [ v

2m
An ] 2
PR _g' W(d) cos nd do
Bn 1 y
- = = Y(d) sin nd do
RT T

The foregoing equations define Ug, An, and Bn in fterms of y(¢) or,
equivalently, 8(¢). Since P(8) is usually not easily extracted and when

it has been it is not a simple form, the evaluation of the various
coefficients isbest handled numerically or by a combination of graphical
constructions, approximations, and iferations. Theodorsen's original

method followed the second course. The original paper may be consul ted

for details. To use the method today one would employ numerical techniques.

Once the process has been completed by whichever means are employed,
one then has the pressures and velocities at each point on the airfoil
surface in ferms of those at the equivalent point on the exact circle.

Analyses of the {ift characteristics of various Joukowski airfoils
in the meantime revealed that the thickness contributed little to the
lift. |1 therefore seemed to some that if airfoils for which one had
difficulty finding appropriate conformal transforms could be characterized
by their mean camber lines only, then perhaps one would have a refatively
simple, yet direct method of evaluating the 1ift and pressure distribution
of arbitrary airfoils. Such an approach is obviously most appropriate
when the actual airfoils are thin. These ideas were developed in the
early 1920's by Munk (Ref. 14), Birnbaum (Ref. 15), and Glauert (Ref, 16).

In Glauert's conception the airfoil is replaced by its mean camber
line which he assumed, never lies very far from the chord line. For this
reason he felt justified in making the approximation that the velocities
over the airfoil could be represented by a continuous distribution of
vortices (or a sheet of vorticity)* iying along the chord line. The
variation in vorticity with chord location is not known initially. The
velocity induced at point x' on the chord of the airfoil due to the vortex
sheet is given by

~

- dx
vix') = . Yyox_
* -g mix - x)
* The reader unfamiliar with the theoretical basis of the concept is

referred to the next section of the present work or to Reference 17 for
comp iete mathematical details.



where y is the vortex strength per unit fength. This induced veloclity Is
actually calculated for a point on the chord but, according to Glauert's
approximation may be taken to be the same as the Induced veloclty at the
corresponding point of the airfoil itself.* Since the resultant of the
free stream velocity and the Induced velocity adjacent to the airfoll
must be parallel to the surface at each point of the airfoil and slince
the flow angularities are small, one may write this statement as

v._dy
@ty dx *
where dy/dx is the slope of the mean camber !ine at x'. |t will be seen

that these two equations are sufficient to provide a complete solution of
the problem in terms of the shape of the curved line which represents the

airfoil. The solution is obtained as Y{(x). Then according to Joukowski's
theorem
c
L= f ovydx
0
C
M = f pVyxdx .
0

The method Glauert employed to find Y(x) is Instructive because most
subsequent calculative procedures use refinements of the same idea. Glauert
first changed the independent variable x to 6 according to the transformation

=< -
x =3 1 cos 8)

He assumed that he could represent y by a sine series in 8:

fo+]
Y = 2V {AO cot 8/2 + A, sin ng}

n=

Hence
ydx = ¢V {AO(1 + cos 8) + :?: A, sin n® sin 6} do
n=
[e ]
then 2 Aol + cos @) + 4 Anlcos (n = 198 = cos (n + 1)6}
vix') =¥ d/ﬁ n=l de
m 0 cos 8' - cos 8

* Karamchet! (Ref. 17) presents a very detailed discussion of the

relation of this approximation to the exact formulation.



> sin (n + 1)8' - sin (n - 1)8'
v{_A0+%;A” sin 8' }

v {u Ag + :E: An cos ne'} .

n=1

Substituting of this result in the second of the two original equations glves

d o0
Eﬁ = - AO + EZ; A cos ng'

According to the theory of Fourier series the coefficients A, are
determined from the shape of the alrfoil by evaluating the integrals

T
N | g'-%§ d6
i
An=% f%—;écos ng do

0

where dy/dx now is the slope of the surface at any x between O and c as a
function of 6. The integral can,of course, be evaluated piecewise if the
functional form changes as 6 goes from O to .

Glauert showed that one need find only Ag, Ay, and Ao in order to
determine C_ and Cy,. Note that

L .2 }” 2 . v : .
g;vfg = Ci EEVT ! pcV {AO (1 cos 9) + ;g; Ap sin nB sin 6}do

2 (Ay + A7)
and similarly that
=T - N

He also showed that

__Llpdr g -2 [y 9
Ag + #Ay - & = -7 gﬁ 3 (1~ cos 8)de = % ] c T+cos 6’

- 2y 48
CL = 2m (a t o gy c 1+ cos B )

thus



Since Glauert also showed that

Y =T _ -1
gﬂ < cos 8 do = 2 (o Ao zA5)

)
- Yy - L y . d8 ) _
Cn, Z(gﬂccosede 2fc1+cose>

0

C

B

L -

Values of C; and CM, computed by this method Glauert found to be "in
close agreement with experimental determinations of these quantities." The
method can be seen to be considerably simpler to use than the transform
technique. During the 1930's when designers sought to reduce wing drag by
eliminating external bracing, they were forced by structural considerations
to abandon the very thin airfoils they had been using until that time.

They found that in order to predict the |ift and moment characteristics

of the newer and thicker airfoil sections that were then becoming the
vogue, more elaborate analytical methods or extensive wind tunnel testing
were necessary. One of these analytical methods took the following tack.
Since the sum of solutions to the Laplace equation (the equation describing
inviscid, incompressible filow) is also a solution, one can describe a
thick, cambered airfoil at angle of attack by superimposing solutions

for a curved line (Glauert's method), a flat plate at angle of attack

(also represented by a vortex sheet), and a thick symmetrical airfoil at

a = 0 (using a distribution of sources along the chord line). An examp le
of such a built-up solution is given by Karamcheti (Ref. 17). Reference 18
provides an expositlon of both the thin airfoil and Theodorsen approaches
and indicates how these technlques were used to guide the very significant
series of experimental Investigations carried out during the 1930's by

The NACA.

These investigations sought to measure in considerabie detail
aerodynamic characteristics of several general families of alrfoils.
Since these data were obtained in well-calibrated wind tunnels at flight
Reynolds numbers and presented valid drag data as well, designers came
to regard NACA TR-824, "A Summary of Airfoil Data," (Ref. 19) and its
forerunners as thelr primary data source. It has only been within the
last 20 years or so that interest in Improved analytical methods has been
rekindled. This revival perhaps can be attributed to the simultaneous
occurance of

1. recent, sharp escalation in the cost of making models and g
conducting tests,

2, the desire to optimize certain aspects of airfoil behavior and
to investigate the characteristics of unconventional airfoils,

3. the appearance of the large digital computer which made it

possible to consider the use of what had previously been rather
laborious methods on a routine basis.

16



One of the first and most widely used methods of the current revival
is that described by J. Weber (Refs. 20, 21). In the earlier of the two
papers she treated the case of a symmetrical two-dimensional alrfoll at
angle of attack. By t+ransforming an afrfoll into a siit, she was able
+o show that the source distribution which she used fo represent the
thickness at zero |1ft can be placed along the chord Iine rather than
on the surface with lit+le error, provided the airfoll Is no thicker
than about 10% of the chord. With +hat assumption and the superposition
of a vortex distribution on a flat plate at angle of attack, Weber obtalned
the equation

v ot '
Vix,z) = = cos a |t +1 f a__dz X
;}1 + (a-a,z( y2 ¥ [ Sy 9 XX
+ sin o "1 =X 141 .’4 dz 2z(x') dx!
*r s e et — — .
X TJy \dx 1- (1 - 2x% /) x - x!

The positive sign holds for the upper surface, the negative sign for the
jower surface. V(x,z) Is the velocity along the alrfoll surface. The
pressure coefficients along the surface are given by

= Vix,z) )2
o1 - (45:2)

The most attractive feature of +he method is Weber's technique for
finding a numerical value of V(x,z). She begins by making the following

definitions
N 1 dz dx!
$' ) = ™ !J ax’ x - x!'

s (x =42
dx

(3) 1 f dz _ 2z(x') dx'
ST =g b [dx 1 - Q- 2x')2] x = x' '’

She then evaluates these quantities at specific points, X, along the
chord using the representation

17



gD

(xv) = d Suv zu
u._.
s, . & s @
VT Ly Py 2
U=
=1
(3) _ (3) (3)
$ 20 (x,) = 2 Suw Tz + Sy o

The coefficients S v(])’ S v(2), S“v(B) are independent of airfojl shape
and Weber gives Tagles of their values. N is the number of points used
to approximate the airfoil (she gives tables for 8, 16, and 32 points).
Point #1 is always at the trailing edge. p is the feading edge radius
and ¢ is the chord length. Weber also gives a table for finding xy
corresponding to a given value of v. These are the chordwise stations
at which the pressure is calculated. 2y is the airfoil ordinate
corresponding to the chord |ocation given by

Xy = 3 (1 + cos ﬁ1>

where 1 <y < N-1 , |+ will be seen that with the aid of the tables of
universal coefficients Suv(1)x Suv(Z)» Suv(S) the pressure computation is
carried out very easily using a desk calculator.

A significant feature of Weber's method is her retention of the
factor 1/v1 + (dz/dx)Z which materially improves the accuracy of the
pressure computation near the leading edge. (See Appendix F,)

Weber extended her approach to treat cambered airfoils in a second
paper (Ref. 21). She showed that two additional terms are required in
the expression for pressure to account for camber:

=1 - {cos a [1 + S(])(x) * 8(4)(x)] tsino YO - x)/x [1 + 8(3)(x)]}2
1+ 5200 £ 5B )2

“p

where

!

N-1 dz
(5) i (5) - C
sV (%) = Sy’ 2z (5;—> .

=J Iix)
8(4)(x) _ Et; s (&) - Y
u:

z
v c
H H2vg

The sub?cripf "c" refers to the camber line. Weber gives tables for %v(A)
and Sy ) and also provides some second order corrections to ajd in
predicting the pressure in the nose regions more accurately.

18



Comparisons between Weber's results and exact theory for Joukowski
airfoils indicate that her mefhod predicts pressures which are low by

about 1%. Maximum camber must be less than about 4% of chord and thickness

less than 10% of chord to obtaln results of this accuracy, however.

The success of Weber's approach and its obvious adaptability to

computer solution (see for example Reference 22) seems 1o have served as

a spur to fthe development of more exact airfoil represenfation schemes

which are practical only 1f carried out by digital computer. The method

of Hess and Smith (Ref. 23) is among the best known of these developmen
'n this method the non-lifting airfoil surface is replaced by a source
sheet with strength o(s) where s is the distance measured along the
airfoil surface. The sum of the velocity induced by the source sheet

ts.

and the free stream velocity is forced to satisfy the condition fthat its

component normal to the airfoil surface at each value of s is zero. Th
statement is written mathematically as a Fredholm integral equation of
the second kind:

o1 ols) + % G(s') &n ris,s')ds' = F(s)

where ris,s') is the distance befween the point of interest, s, and any
other point on the surface, sf o(s') represent the source strengfh at

[

points other than s; g(s) is the source strength at s; and F(s) represenis

ihe component of the free stream velocity normal to the surface at s.
The left side of the equation Then represents the component of the
velocity induced by the source sheet which is normal to the surface.
Nofe that for a given airfoil in a stream of known speed the unknown
quantity is ol(s') which occurs under the infegral sign.

To solve fhis equation Hess and Smith make several approximations:

1. fthe contour of the airfoil can be represented by N straight
line segments,

2. ols') is constant over each segment,

3. the integral is evaluated at only one point—generally the
mid-point—of each segment.

This leads to a system of N simultaneous | inear eguations which can be
~olved to find o on each segment. For good accuracy, N must be large,
particularly in regions of high curvature. Knowing 0 one can then find
the tangential component of velocity from which one can compute the
surface pressure.

To +reat the lifting airfoil, Hess and Smith in effect superpose &
vortex sheet of suitable strength so that the tota!l flow safisfies the
tangency condition as well as the Kutta condition at the trailing edge.

local

Martensen (Ref. 24) chose a different approach. He represented fthe
airfoil by a vortex sheet on ifs surface. By requiring that the strength



of the vortex sheet be identical to the velocity distribution on the
surface of the airfoil, Martensen was able to show that In the interior of
a closed vortex sheet  +the velocity is everywhere zero. Thus on the

inner side of the vortex sheet the net tangential velocity which is a

sum of that due to free stream and that due to the vortex sheet is zero, or

léfﬁ-- %ﬁ'gﬁ' 96 I'(s") 2&n r(s,s")ds' = Voo (gg-cos a + %% sin a) .

This equation has almost exactly the same form as that formulated by
Hess and Smith.

To solve the equation Martensen chose, as did Hess and Smith, to
replace the integral by a summation. As a result he also ended up solving
a system of simultaneous equations. An equation expressing the Kutta
condition is required to complete the formulation. Martensen's method
while giving the velocity distribution on the surface as +he solutlon
to the system of equations does not give good results for very thin
airfoils. The reason is that when the upper and lower surface control
points are very close together, the vortices located there induce strong
fangential velocities on each other. While this induced velocity
actually decays very rapidly for points in the nefghborhood of the control
point, the method of approximating the integral which Martensen used
assumes it to be a constant. Jacob (Ref. 25) used a different limiting
approximation which improves the results but at the cost of restricting
one's freedom in distributing the control points on the airfoil surface.

tf an inviscid fluid flow Is.everywhere parallel to the surface of
a closed body then the surface of the body can be represented by a
streamiine on which the stream function, ¥, is constant. Oellers (Ref. 26}
used This idea to write

Y = Vo vy(s) cos q - V, x(s) sin a - %r- S;i I'(s") &n r(s,s')ds!
m

To solve this equation for Y and I'(s"), the integral is approximated by
a summation of the type used by Hess and Smith.

Chen (Ref. 27) made a very detailed comparison of the three foregoing
methods. He found that when applied to airfolls for which analytical
expressions for the pressure distribution are known, the Hess-Smith method
always gives the correct value of circulation generated by the alrfoil.

On the other hand the computed surface velocity was found to be very
sensitive to the coordinates of the control points., A tiny error In the
input coordinates can produce a wavy behavior of large amplitude In the
computed surface velocity, more so than is reasonable physically. Chen
also tried approximating Martensen's integral in the same way Hess and
Smith approximated theirs. He found that the resulting circulation was
smaller than that found by Hess and Smith because the integration is
carried out along straight line segments rather than curves. This also
leads to some difficulties in the numerical computation because the
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matrix of coefficients is ill-conditioned. Even aftfer curvature effects
are taken into account, the circulation computed by the Martensen-Jacob
method, although larger, is still slightly smaller than that obtained

by the Hess-Smith method. On the other hand, because it is a vortex
sheet and tangential velocities which are considered by Martensen and
Jacob, the computed results are not very sensitive to inaccuracies in
the valiues of the input coordinates.

Chen prefers Oellers' method, primarily because it leads to fewer
computational difficulties. Since it is an integral representation, no
surface slopes must be computed, a process which always causes some
foss in accuracy. Secondly, because the kernel of the integral equation
is simpler in this formu!ation, the computing ftime required is generally
less.

Several improvements in the ftransform approach fo predicting airfoll
characteristics have also appeared in recent years. Lighthill (Ref. 28)
chose to specify fthe desired velocity distribution about the airfoil in
closed form. Sato (Ref. 29) extended this approcach to permit a velocity
distribution of any kind to be specified. As worked out by Sato, the
velocity distribution is assumed in such a way that front and rear
stagnation points can be treated separately. A well-behaved function
g{6) takes up the velocity distribution everywhere with the exception
of the stagnation points and three constants which are imbedded. The
constants are determined by g(8), the fact that the airfoil is a closed
curve, and the fact that the flow field at infinity is uniform. A set
of Initial values must be given to the three constants in order to
obtain g(8) from the specified velocity distribution. This g(8) is
then used to obtain a new set of values for the constants which will
give a closed curve as the airfoil geometry. The process is repeated
iteratively until the before and after constant values match. tn this
way Sato's method always guarantees an airfoil geometry giving the
desired velocity distribution. Because of the repetitive nature of
many of its steps and the need for piecewise integration, it is best
done on a digital computer.

THE AIRFOIL IN VISCOUS FLOW

|+ was of course recognized that all of these approaches would give
somewhat optimistic predictions of airfoil {ift and no prediction at all
of airfoil drag. |t was therefore just a matfer of time until efforts
would be made to attempt to account for the effects of viscosity at
least so far as the |ift produced by an airfoil is concerned. Powell
(Ref. 30) was one of the first to attack the problem in a fairly
rigorous fashion. He modified the airfoil geometry in two ways to
account or the effects of boundary layer displacement of the inviscid
flow. 7o the airfoil! thickness distribution (symmetrical about the mean
camber line) he added the total displacement thickness evenly distributed
between upper and lower surfaces. He recognized, however, that the
displacement thickness is not the same in the two surfaces, being thicker
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on the upper surface. He chose to account for this fact by reflexing the
trailing edge, adding 3(8*ypper - 8* | ower) to the ordinates of the mean
camber }ine. Because the airfoil did not then physically close at x = ¢,
he chose to set the upper and lower pseudo-surface velocities equal at

x = c as a replacement for the Kutta condition. He then employed Weber's
method to predict the surface pressures. Powell assumed in his computation
that 8%(x) was available a priori. He also discussed the problem of
"closing" the pseudo-airfoil in the wake as a means of finding reasonable
surface slopes at x = c.

Apparently Powel|'s paper served as a source of inspiration for the
work reported in Reference 31. Although the sketchy nature of the
discussion in the report makes it difficult to ascertain precisely the
heritage of the approach used or even itfs particulars, detailed examination
of the computer program indicates that the authors (of the Lockheed
Georgia Company) actually employed a combination of methods (vortex dis-
tribution on surface of a cambered airfoil plus a vortex distribution
on a symmeitrical airfoll) along with the idea discussed by Powell
of modifying camber and thickness separately to account for boundary
layer thickness. This represents somewhat of a departure from an earlier
version of the computer program (Ref. 32) which is said to be based on
Van Dyke's inviscld method (Ref. 33) and earlier British work on viscous

corrections which was also considered by Powel!l. Van Dyke offered a way
of treating thicker alrfoils by transferring the surface tangency condition
to the chord line with a Taylor series expansion. In other respects

his approach is equivalent to Weber's,

The significant feature of the Lockheed program is its provision for
arriving at the pseudo-airfoil shape in an iterative fashion. The program
uses the inviscid pressure distribution and a fairly crude boundary
layer computation to obtain the initial estimate of the displacement
thickness. The displacement thickness is then used to get a new inviscid
pressure distribution. The process is continued for five iterations until
the pressure distribution used to compute the displacement thickness is
virtually the same as that which one gets after adding the displacement

thickness to the airfoil geometry. Computations of skin friction, transition

of the boundary layer from laminar to furbulent flow, and location of the
separation point are made at the same tIme. Program output is therefore
airfoil 1ift, drag, and pitching moment as a function of angle of attack.
I+ can also account for variations in free stream Mach number.

The program, which forms the basis of the modified version given
herewith, was found, when compared with experimental results, (see for
example Reference 52) to:

1. over-estimate the lift curve slope by 5% to 8%,

2. give very accurate estimates for the surface pressures excep*

in the neighborhood of large suction peaks or incipicent
separation,
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3. give rather poor estimates of section drag, errors of 30% to
50% being common at low-to-moderate angles of attack; in
particular the integration of the inviscid pressures in the drag
direction 1s frequently not zero.

Despite these difficulties, the success of the program aind its Inherent
rigor makes it apparent fthat with improvements in the boundary layer
computation method and in the numerical procedures used an accurate and
reliable means of estimating all the aerodynamics characteristics of
airfoils at subsonic speeds is at hand. Reference 31 is the basis for the
presentation in the next chapter of a theory for the prediction of 1iff,
drag, and moment characteristics of two-dimensional airfoils.

COMPRESS IBILITY

To complete the discussion of developments in theoretical means for
predicting the inviscid characteristics of light plane airfoils it is
necessary to mention the effect of changes in Mach number, Although
non-jet powered aircraft are not likely to reach speeds such that a local
sonic point will exist on the airfoil, many do experience sufficiently
high speeds to distort the M = O pressure distribution significantly.
Thus it is desirable to chronicle the efforts which have been made in
describing these effects.

Despite the folklore that the speed of sound presented an impregnable
barrier to the velocity of flight vehicles, it was recognized quite early
by many aeronautical scientists that artillery shells, for example,
frequently exceed this speed. One should therefore be able to develop
an expression for the pressure forces on a body for situations where the
compressibility of the air is not negligible, Studies later showed that
by allowing the density to vary in the equations describing the motion
of an inviscid fluid but retaining the idea that the airfoil was thin
and therefore did not disturb the flow greatly, i1t was possible 1o
describe the flow over airfolls by the eguation

»(1 -Mo"i,)i?+a—2%=o
9% ay

along with suitable boundary condltions. This equation, however, can be
written as

32(B9) | 3%(BY) .
ox2 3(By)?

where B2 = 1 - M2, @ constant. The form then is that of the Laplace
equation with which hydrodynamicists and early aerodynamicists were already
familiar. Consistent with the small disturbance idea is the representation
of the pressure coefficient at an arbitrary point on the airfoil surface

by
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This simple relation was advanced about 1928 by Glauert and by Prandt!
Independently. It provides a good prediction of experimental results
for local Mach numbers over the airfoil less than critical. [t fails at
higher Mach numbers because for rigor, the equation describing the flow
must then contain an additional, non-linear term. This also makes it
impossible to compare exactly the same alrfoil at two different Mach
numbers. Nevertheless, the fact that the Prandt|-Glauert formula permits
one to find the pressure distribution over airfoils with reasonable
accuracy for all Mach numbers less than that where the flow first becomes
sonic merely by knowing the M = 0 distribution led to a very serlous
search for parameters which can be used to determine when the flow over
an airfoil at one Mach number is similar to that over a second airfoil
at another Mach number and hence will have the same pressure distribution.

One of the most successful efforts in this directlon was the formula
CPine

Cp =
(O
T-ME+ 1\ 2
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proposed by Kérmdn and Tsien In 1939, (Quoted in Reference 56.) Although
not strictly applicable to the flow over the same airfoll at different
Mach numbers, it has been used in this way with good results. A good
discussion of the theoretical basis for comparing flows over bodies at
one Mach number with flows over the same or related bodies at different
Mach numbers Is given in Chapter 10 of the text by Liepmann and

Roshko (Ref. 57).

EXTENSION TO THREE DIMENS!IONS

The conceptual basis for expanding an airfoil section laterally into
a finite wing can be traced to an 1894 paper by F. W. Lancaster. He
elaborated these views in a book (Ref. 34) published in 1907. The
mathematical expression of these ideas in a convenient form, however,
seems to have originated with Prandt| (Ref. 35). He took a very simplified
view of the wing, argulng that because the |1ft curve slope of all alrfoils
Is nearly the same and because one cannot in any event determine viscous
effects from an inviscid theory why not, then, for purposes of determining
the effect of planform geometry or twist, represent the wing by just a
Iine located at about the airfoil aerodynamic center. By placing a
circulation about this line whose strength varies with the angle of attack
of the wing, one can obtaln a linear |ift curve (C[ versus a) of the
correct magnitude. Since such a vortex must either close or extend to
Infinity, Prandtl assumed that the vortex leaves each wing tip and
extends, parallel to the fuselage, to some point very far downstream at
which 1t closes; this can be considered to be at Infinity for all practical
purposes. Such a flow pattern is then consistent with the vortices
observed leaving the tips of lifting wings. By superposing a serles of
vortices of different strengths and spans but assuming that they all
"roll up" into one on leaving the tips, one can represent a rather
arbitrary spanwise |ift distribution. '
Glauert (Ref. 16b) points out that the flow induced by this vortex
system Is normal to the span and to the direction of the aircraft's
motion and is directed downwards in general. This downward flow velodlty,
w, Is small compared with the flight veloclty, U, but has the effect of
reducing the angle with which the wing meets the oncoming flow, o. The
reduction In angle of attack is given by w/U. Since w varies over the
span, the induced angle of attack also varies over the span. Further,
since the I1ft is defined as the force normal to the flow direction,
the presence of an Induced flow angle w/U causes the |1ft+ force to tilt
backwards, giving a component in the direction of the drag force. This
Induced drag,

- ¥
D; =L

Is an inviscid effect resulting from the finite extent of the wing span.
It may be noted that the work done on the fluid by the induced drag appears
as the kinetic energy of the trailing vortices.
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in the lifting line theory, the characteristics of a monoplane
airfoil are determined by first finding w and hence the effective angle of
attack at each point along the span, then finding the corresponding two-
dimensional lift and drag, and finally, infegrating across the span.
The first step in this process is determining w in terms of the strength
of the trailing vortices. Between the points y and y + dy on the span,
the circutation I can be assumed to fall by an amount -(dI'/dy)dy and
hence a trailing vortex of this strength springs from the element of span
dy. There is therefore a sheet of trailing vortices extending across
the span and the normal induced velocity, w, at any point yj on the span
contains contributions from all the trailing vortices in this sheet.

At yq, therefore,
b/2 - %I_ dy
) = — .
w(y1 j-b/Z 4y - y1)

I+ can also be shown that the circulation around a section of any
wing (airfoil) is

(0 - w/U) U

Although C actually varies slightly with airfoll geometry it Is usually
taken to be a constant. This equation, in conjunction with the preceding
one, makes it possible to determine the circulation and w for any wing

In terms of the local values of ¢ and a. Note, however, that the first
of these two equatlons is an integral equation because one of the unknowns,
I', appears under the integral sign. This fact is responsible for much
of the difficulty incurred in solving the wing |ift problem because, in
contrast to differential equations, few techniques exist for solving
integral equations.

The technique which Glauert (Ref. 16b) suggested for solving the
two equations proceeds as follows:

Call y =-%cos 6
and I = 2bU An sin nb
n:
11 .
u InApcos nb sin nBy
= = d = R reE e —
Then WO = _/(; cos B - cos 0 ° UEnA” sin 8

from which it may be seen that at any point along the span

wsin 8 = U ) nA, sin nd
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The second equation connecting I' and w becomes in this notation

ZnA, sin nb
26U STA_ sinn® = 4 C cU{a—____n__.___._.}
2 n ? "lg sin 8

Letting u = (C c)/(4b) one can write this as

E:An sin nB sin 8 = po sin 6 - u 2:”An sin nd
or
E:An sin n® {(pn + sin 8) = ua sin 6

In general it is to be expected that u and a are functions of 8. The
problem now is determining the values of the coefficients A, which will
satisfy the foregoing equation at every value of 8 along the span of
the particular wing in question.

In passing one may note that since

b/2
L = &su? f b2pU? (ZA, sin nd) sin 6 d6

b/2

2 P2
b 5 U A] »

S

(@]
—
O

L

TAR

1.
hen A1 -

°

From this result it appears that the wing lift is determined by the value
of A1 and that the other coefficients in the series for the circulation,
T, modify the shape of the spanwise |ift distribution without altering
the fotal lifft.

The general procedure for obtaining the coefficients is to write as
many equations as coefficlents one desires to evaluate, each equation for
a different value of 8, and solve the resulting system for the coefficient
values. For example, the system
Alsin 81(yy + sin 91) + A3sin 361(3u1 + sin 81) + A5sin 581(5u] + sin 91)

+ A7Sin 791(7“1 + sin 61) = uld.]Sin 6]

A1sin 62(u2 + sin 92) + ABSin 362 (3u2 + sin 62) + Assin 562(5u2 + sin 62)

+ A7sin 762(71,12 + sin 62) = Uzaz sin 62
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A1sln 83(u3 + sin 83) + A3sln 363(3u3 + sin 63) + Assln 563(5113 + sin 63)

+ A7sin 763(7113 + sInOS) = Hz0z sin 63

A]s[n 64(u4 + sin 64) + Assin 364(3u4 + sin 64) + Assln 564(5u4 + sin 64)

+ A7sin 764(7114 + sln 64) = Uyl sin 94

can easily be solved for Ay, Az, As, and Ay by algebraic techniques since

the values of 61, 85, 63, 84, uy, Uy, Uz, U4, etc. are known from
the wing geometry. The value of A, becomes independent of n only when n Is large.

Only odd coefficients occur in the serles because the wing Is assumed
to be symmetric about [+s mid-span point.

The Induced drag Is found easlly once the A,'s are known. Since

b/2 y b/2 b/2 - z: z:
D, = f =L dy = f pwldy = f pU“be(> nA sin nB)() A sin nB)de,
' -b/2 Y ~b/2 -b/2 i n

= 2 P2 2
D; = m* S u En/\n X

Since A, is independent of the planform shape, It follows that the
tnduced drag will be a minimum when the other coefficients In the series
are zero. The circulation for such a condition Is then represented by

P—ZbUmslne—ZbUm 1 - cos G—ZbUW 1 - 4y“/b

or the equation of an elllpse. An elliptical span-wise distribution of
circulation (11ft) can be obtained In practice by an elliptical variation
of chord In the spanwlse direction or by combinations of taper and twist.

During preliminary design one of the things one seeks to establlsh,
at least approximately, is the relationship between aircraft attitude
and I1ft developed. This entalls finding the effect of the finite wing
span on the slope of the |ift curve. For infinite aspect ratio of course
it Is about 2m per radian for all alrfoils. The lifting=-line theory,
however, indicates that for an elliptical |1ft distribution—the most
efflicient type—there Is a reduction in the effective angle of attack of
CL/wAR. To develop the same Iift, the geometric angle of attack must
then be ayp + C/TAR. The geometric angle of attack for finite-span
wings can also be wrltten

CL
azby . 2 _
d2D<1+ T‘_PR>—GZD(1+-AE)—G3D-
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Stnce CLGZDaZD o3p when the finite span wing develops the same |ift

= Clasp

as the infinite span wing, the three-dimensional lift-curve slope is
2T
C = per radian.
asp 4 2

The conclusion drawn from lifting line theory that an elliptical
spanwise aerodynamic loading leads to minimum induced drag has been of
particular interest o the designers of large aircraft. Since the
performance gains resulting from minimum induced drag can be significant
for such aircraft, designers have sought to devise methods capable of
treating complex planforms more accurately and accounting for inviscid,
non-planar effects (wing fences, end plates, engine pylons, etc.) in
determining the 1ift distribution. The latter area has been of more than
academic interest since the appearance of jet transports with pylon-
mounted engines and boundary layer control fences. The computer program
described by Lundry (Ref. 55) uses a transform technique to map the
non-planar configuration into a type of |ifting line and then computes
the distribution of twist and camber necessary to minimize the induced
drag.

Many other significant features of the aerodynamic characteristics
of wings have been deduced using the lifting-line approach. This theory
has fts limits, however. Obviously [t does not treat well the case where,
because of sweep, there is a substantial spanwise flow component, nor
Is a single Iifting 1ine an adequate representation of a wing when the
ratio of span to chord is not large. These deficiencies were recognized
quite early, but because of the complexity of the generalization from
lifting line to Iifting surface and the use of high aspect ratio unswept
wings untll after World War |1, solution techniques were long In
developing. In 1950 Multhopp (Ref. 60) employed a generalization of
the scheme above to make one of the first successful attacks on the
problem.

The complexity one must contend with is easily seen in the expression
for the local angle of attack (Ref. 43) at a point on the wing

1 b/2 q X=Xy o x; = X
alxq,yy) = - — f ..___‘L.__{ f T ACp(x,y) |1+ dx
81 Jps2 vy - ¥ X=X o Yx=x) < + (yy=y)*

where ACp s the unknown load distribution and the bar fthrough the integral
sign denotes the principal value.

As in the lifting line theory, the unknown loading function Is usually
approximated by a series:
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CplEn) = Ty _ ar(m)h(X)
v
cos[£ (2r + 1] X = X
; -2 2 : . A VAR 71- T :
with h (X) =3 S (P 2) 3 E=TFsn= TR XS c = 3(1 - cos yY);
P = cos™! (1 - 2X) 8 = cos™ (n)

m m
2 ﬁ‘: . . _unm
ar(n) = oTr Z_ 3n _ sin ué sin o

This approach in effect replaces the unknown ACp(x,y) by mN unknown
coefficients A.,. The problem is then fo calculate A, by satisfying the
boundary condition al(xy,y) at suitable points distributed over the planform,
The main numerical difficulty lies in determining the double integral due
to each term in the respective loading.

Reference 43 discusses three methods of carrying out the integration
which are of comparable accuracy and difflculty. The details of one of these,
including the computer program (in Algol 60), is given in Reference 61. In
the later work, the theory has been extended to freat slowly oscillating
wings. Reference 41 makes some detailed appraisals of the accuracy of this
and other methods developed in Europe. A similar approach for the non-
oscillating case with the computer program given in FORTRAN is presented in
Reference 39. Further details are discussed in Reference 44. A FORTRAN )
program of slightly different approach is given by Lamar in Reference 59,

The effects on accuracy of certain assumptions for the form of the pressure
distribution, the number of points at which the boundary conditions are
satisfied, and the location of these points is discussed in Reference 38.
Wagner, in Reference 47, gives a good summary of the present state of
development of true |ifting surface theory. He is particularly careful

Yo distinguish this approach from the vortex fattice or other "finite
element" approaches.

Because one seems compelled to employ a large system of simultaneous
equations to approximate the |ifting surface integral equation satisfactorily
and because the choice of points at which the boundary condition is satisfied,
the method of integration, and the complexity of the planform all effect to
the accuracy of the results, investigators quickly began to search for
alternate lifting surface methods. Although called by a variety of names,
the most popular alternate is an extension of the idealized single horseshoe
vortex representation of a wing given by Glauert (Ref. 16b). By dividing
the wing surface into a finite number of flat rectangular panels, placing
such a horseshoe vortex on each, and summing the contribution of all the
vortices to the flow over a contfrol point in each panel, one obtains a
system of relatively simple equations which, when solved for *he individual
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vortex strengths, has been found to give remarkably good estimates of the
pressure distribution over the wing. Reference 37 describes such an approach—
called here a vortex lattice—and supplies a FORTRAN program for computing

the |ift and moment distribution and overall |ift and moment characteristics

of rather complex wings. This particular program can accept a maximum

number of horseshoe vortices on the left side of the plane of symmetry of

120. Within this limit, the number of horseshoe vortices in any chordwise

row may vary from 1 to 20 and the number of chordwise rows may vary from

1 to 50. It can treat wings with dihedral and/or sweep.

Reference 40 describes another perhaps more restricted computer-based
approach while Reference 42 is a systematic mathematical study of the
characteristics of the method and various solution technigues. Current
work at the Boeing Company (Ref. 58) seems intended to reduce computation
time and increase accuracy by using overlapping (both spanwise and chordwise)
continuous distributions of vorticity over a set of panels on a paneled
wing. The basic distributions are independent and each satisfies all the
boundary conditions required of the final solution. Boundary conditions are
satisfied in a least square error sense. Excellent results have been
obtained thus far and consideration is now being given fo including an
automatic paneling routine in the program so that the user need only specify
the wing geometry and the accuracy with which he wishes to calculate the
downwash in order for the program to select, on an iterative basis,
sufficient panels to satisfy this requirement.

All of these lifting surface and vortex-lattice theories suffer from
twin faults: they are applicable only to planar wings, wings without
thickness which lie entirely in the x-y plane, and they do not include the
effects of viscosity. One inferesting way of circumventing these problems
for unswept, moderate-to-high aspect ratio wings is given in Reference 306.
There, two dimensional data—obtained either from wind tunne! test or
theoretical calculations which include the effects of thickness and viscosity—
are extended to three-dimensions by using lifting-line theory fo determine
the effective local angle of attack at each point along the span, looking up
the two-dimensional characteristics corresponding to that local angle of
attack, and integrating the results in the spanwise direction. This method
forms the basis of the discussion in the next chapter on extending the theory
for predicting two-dimensional aerodynamic characteristics to treat complete
wings.

TREATMENT OF VIS5COUS EFFECTS: DRAG

Despite the fact that much of the aerodynamic behavior of an airplane
can be deduced by considering air to be an inviscid fluid, one very important
characteristic, ifs resistance to continued motion, arises directly from the
viscosity of the air and necessitates the installation of a power plant and
a store of fuel to operate that power plant. Unfortunately, adequate theore-
tical descriptions of this characteristic are very much more difficult to
provide than are descriptions of the aircraft's lifting behavior. For this
reason early designers relied almost exclusively on correlations of experi-
mental ly-determined drag with body shane and surface condition during the
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preliminary design phase and on wind tunnel and flight tests of the actual
configuration during the final stages of development. This procedure is still
widely used. Reference 53 is an up-to-date compilation of the most widely
accepted correlations along with procedures for using them to estimate th
drag of complete subsonic aircraft. A similar approach is employed in
Reference 62.

Analytical determination of the drag of bodies evolved from the work of
Prandtl, who in 1904 proposed that the effects of viscosity could be considered
to be confined to a thin layer of fluid immediately adjacent to the body sur-
face (Z.e., a boundary layer). Such an assumption permits a considerabie
simplification to be made in the equations describing fluid motion in this
region. Qutside this region one can use the classical inviscid analysis.
Other investigators then began to develop methods for solving the boundary
layer equations, first for simple configurations such as flat plates and
later for curved two-dimensional bodies. One of the more versatile techniques
has been programmed for computer solution (Ref. 63). Although the technique
treats compressible flows with heat transfer, the flow will be taken here to
be incompressible and non-heat-conducting in order fo describe the approach
as simply as possible.

If one begins with the conventional momentum integral equation (equation
44 in the next chapter),

dé due {26 + &* v fau
ax t dx Ug - uez dy / wall

and makes the following definitions

e e
"=V i ’
_ &*
H = 8 ,
then this equation can be written
Sy . = 2[n(H+ 2) +2] =N
€ dx | dug
dx

~Correlation of N against n for a number of exact theoretical solutions
of the boundary layer equations indicated to Cohen and Reshotko (Ref. 64)
that one could take
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N = A + Bn

where A and B are constants for flows with zero or favorable pressure
gradients. Under these circumstances the equation can be integrated to
yield

A = 0.44 and B = 5.5. Then,
1/2

Since exact theoretical solutions of the boundary layer equations give a
unique correlation between n and £, this can be used fto find (Bu/ay)w.

Then one may use
6*
A+Bn=2|n i 2] + 2

The solution for the turbulent boundary layer case is obtained from a
variant of the momentum intfegral analysis with experimental skin friction
correlations. Transition is determined from a variant of the Schlichting
Ulrich (sixth order polynominal representation of the velocity distribution)
‘laminar boundary layer stability analysis.

to find &*.

Comparisons between predicted and measured values of &% and 6 on an
NACA 0012 airfoil were qulte good, except in the immediate neighborhood of
the transition point. It is to be expected, therefore, that predicted
values of skin friction drag would alsc be quite good. To find the total
drag on the airfoil, however, it would be necessary fo find the change in
the pressure distribution over the airfoil resulting from the presence of
the boundary layer displacement thickness and add this to the skin friction
drag or integrate completely across the wake to find the overall change in
the momentum of the flow caused by the passage of the airfoil. Schiichting
(Ref. 65) describes a method, based on the latter idea,which was developed
by Squire and Young in 1938. The drag force per unit length of span
represented by the momentum defect in the wake far downstream of the airfoil

Is
D y:+oo
E=f pu (Ue - u) dy

from which
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The problem, then, is to evaluate 6_ in terms of the boundary layer
characteristics over the airfoil.

The momentum integral equation of boundary layer theory is of course

also valid in the wake behind a body. |{In the wake, however, the shearing
stress at the wall is zero so that the equation for this circumstance becomes

do  dug (20 + &%)
ax T dx TP

x now denotes the distance from the frailing edge of the body measured along
the wake centerline. The foregoing equation can also be written as

2 + HY dug Use d{Ue/Uc)
- el (FARTL o v
Ue X Ue X
d Ue
—(2+H)&(§ln E)

Integration by parts of this equation along x from the trailing edge
of the body (station 1) to a station very far downstream in the wake results

in
1 1 ug dH
+ — —
‘[; &n Uoo dx ax .

1
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At the downstream station ug = uw and
- Ye
S 1 0 dy
8_: Ue1 Ueg d =1
ol L R
thus, H=H, Ue
Ln (84/6 ) + (Hy + 2) &n (ue]/uw) = JL_] n 5= dH

or

+
ue] H1 2 H] U
B0 = 64 n\ exp Ln Ug dH J .
bt 1

Now, if the integral on the right hand side and ug{/u, can be evaluated,

one has the required explicit relationship between 0o and 8;. From an

analysis of experimental data H. B. Squire proposed that one could assume
2n (Uo/Ue) _ &n (U/Uey)

= = constant .
H -1 Hi- 1
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Hence,
&n (um/ug) = constant (H - 1)

Hy Uy, Hy 2n (u /ug) In (uw/ue]) H2 Hy
QnrdH (H- 1) ‘_H_“‘f"‘]'— dH:—H—_:—]—_ T—H
1 e 1 ! ! 1

1
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=
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with this result 1

H, +2 H,-
ue1 1 u, 12 “e] :
b = 81\ U Ugy - 81 U

A typical value of Hy is 1.4, For this value

] U, 3.2
% = 01\ s

0. fUe. \3+2
_ 2
CD T ¢ Uco

To find Cp, then, one must know the value of the pofential velocity (velocity
outside the boundary layer) at the trailing edge and the value of the momentum
thickness at the same place. One attempt to be more explicit is reported by
Schlichting. Using relations for a flat plate H. B. Helmbold obtained

_ 0.074 ofue)33 (& £ 045/ [ et \3-75
Cp =T RL e dig) + 62.5 R\ ¢ U
e x,/c

for the drag due to the one surface of a wing. The subscript "t" refers
to the point of transition from laminar to turbulent flow.

and thus

The method of Squire and Young can be extended fairly simply to axisym-
metric bodies and was so done by Young in 1939. (ARC R&M 1947)

Cebeci, Mosinskis, and Smith (Ref. 54) studied the possibility of improving
the estimation of the drag of two-dimensional and axisymmetric bodies by
improving the laminar and turbulent boundary layer methods used as inputs
to the Squire and Young method. They also sought the effect of better
identification of the location of the transition region. They concluded that
the total drag coefficients of two-dimensional bodies such as airfoils can
with such improved techniques be calculated very accurately for a < 6°.

For higher angles of attack "use of the Squire-Young formula introduces an
error into the drag calculations. . .since the Squire-Young formula is
applicable only to a symmetrical wake." It would seem, however, that this
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restriction could be removed without excessive difficulty. They also found
that by improving the theoretical turbulent boundary layer methods they
could match 57 experimental values with an rms error of 2.9%

The total-drag coefficient of axisymmetric bodies, they found, can be
calculated less accurately than the total drag coefficient of two-dimensional
bodies. "The calculations show a great sensitivity to the choice of tail end
locatlon on the body and to the use of inviscid pressure distributions in
the drag calculations." For more general three-dimensional bodies such as
aircraft fuselages there are unfortunately no quasi-rigorous analytical
methods now available and one must resort to techniques based on rather
gross approximations or to correlations of experimental results.

The reader has no doubt observed by this time that a detailed discussion
of ways to calculate the drag of bodies ultimately comes to a consideration
of methods for solving the boundary layer equations. Even the simplest
case of steady, two-dimensional, incompressible, laminar flow involves a
non-linear partial differential equation for which a general closed-form
solution is impossible. This is the reason for the proliferation of
solution techniques one sees in the literature. Some of these involve a
great deal of insight into the problem and others employ rather sophisticated
mathematical techniques. For these reasons it seems appropriate not to
discuss the various methods in detail here but rather to direct the reader
to Reference 65 which is probably the best single source of information on
the rationale behind the various soclution techniques.

FUSELAGE CONTRIBUTIONS TO'LIFT, DRAG, AND MOMENT

The isolated fuselage is generally a body with a plane of symmetry
rather than an axis of symmetry. This situation effectively precludes
accurate calculations of its Iift and drag by relatively simple, closed-form
methods. Thus, until recently, it was the practice to rely on the guldance
provided by a few classical approximate theoretical treatments and determine
the detailed 1ift and drag characteristics experimental ly.

Sir Horace Lamb (Ref. 6) for example was able to find an exact expression
for the potential about an ellipsoid with three unequal axes. The problem
was treated somewhat more completely by Munk (Ref. 66) who was Interested
in its application to determining the aerodynamic characteristics of airship
hulls. Timman (Ref. 49) extended the analysis to include flows with velocity
components along two axes simultaneously. He then calculated the streaml!ine
patterns for such a case. From these one can get the inviscid pressure
distribution over the surface. This could then serve as the basis of a
boundary layer calculation. Timman in fact had previously developed a
boundary layer computation method for such a body and Reference 49 was
intended to supply the potential fleld needed to begin the calculation.

A 1941 paper by Hans Multhopp (Ref. 51) provided a quantum jump In
theoretical understanding of the fuselage contribution to airframe |if+ and
moment. The essence of his arguments are contained in the following exerpts
taken from a translation of that paper.
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Ome notoriously neglected phase in the aerodynamics of aircraft is that
of the fuselage. This is due, in the first instance, to the fact that the
fuselage considered by itself is a comparatively simple structure the effects
of which are apparently readily perceived. But its real effects come into
evidence only in combination with other parts of the aircraft, especially
with the wing; hence it becomes necessary to evolve a fuselage theory which
ineludes this mutual interference.

The search for mathematically exact solutions for such interference
problems is exceedingly bothersome throughout, as it would entail the
development of a three-dimensional potential theory with very arbitrary
boundary coditions; a problem to which hardly more than a few proofs of
existance could be adduced.

LEEEEEEEEE T

For the present task the performance mechanics are, in general,
excluded, since drag problems usually must be left to experimental research.

RARAAAKAA AKX

Before proceeding to the analysis of the interference of the fuselage
with the other parts of the airplane, a brief discussion of the phenomena
observed on the fuselage, in the absence of all other airplane parts, is
necessary.

On analyzing the conditions in frictionless parallel flow the first
result is the total absence of resultant forces on the fuselage; the pressure
distribution over the body merely affords free moments. These free moments
are of some significance since they are proportional to the angle of attack
of the fuselage and hence enter the stability quantities. The sign of these
moments is such that the stability about the mormal axis is lowered by the
action of these free moments. On an axially symmetrical fuselage the free
moment in flow along the fuselage axis is, of course, zero; on unsymmetrical
fuselage forms or by appendages the axis for zero moment can be located at
any other place. The free moment is produced by negative pressure on the
upper side of the bow and on the lower side of the stern and positive
pressure at the lower side of the bow and on the upper side of the stern.
(See the figure at the top of the next page.)

The free moments can be computed in various ways. If time and patience
are no object, a field of singularities substituting for the fuselage may
be built up by means of potential theory methods.* But for the task in
hand Munk's method is much more suitable. He simply determined the asympototic
value for very slender fuselage forms and then added a correction factor
dependent on the slendermess ratio, which he obtained by a comparison with
the values of easily and accurately computable forms.

* This is, in fact, just what is done in Reference 23; the computer makes
it possible to be impatient and still accomplish the task quickly and accurately.
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According to Munk, the unstable moment of a very slender body of
revolution is

1 dM
qda = - 2 vol. ,

the effect of finite fuselage length being accounted for by the correction
factor (K, - Ky) which depends on the slenderness ratio L/D. (See the
accompanying sketch.) In this representation K is the air volume in ratio

aM _
o= 2(Ka—K;) vol.
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to the fuselage volume by transverse motion of the fuselage* and K that by
longitudinal fuselage motion. For other than axially symmetrical surfaces
it is

dM L %%
R__I 2
do =3 (KZ - K]) '[(; bR dx.

This is all that the congideration of the potential theory supplies
concerning a single fuselage. But the actual behavior of the fuselage is
not deseribed by the potential flow alone. As soon as the flow past the
fuselage ceases to be perfectly symmetrical, boundary-layer material
accunilates more on one side than on the other and the flow conditions
are altered. This results in additional forces at the fuselage and so
becomes an appreciable factor in the moment balance of the fuselage. The
point of application of the induced frictional lift or cross force 18 of
course proportionally far aft at the fuselage.

As the dependence of frictional lift on angle of attack is strongly
suggestive of a very similar course on wings of very small aspect ratio,
its correlation suggeste itself. For a wing of very small aspect ratio we
get approximately for a = O:

1 dA _ mb? ***
gda - T2 s

* The air volume depends upon the local air velocity ‘which is found from
an exact solution to the flow over an ellipsoid. (See Reference 66, Division
C.) The formula for computing Ki is given (Ref. 66) as

2 l_:TQi 3 lo lrte o
e 2 97 ¢

K =
1 1 - g2 1 +e
2 -2(——~ I log —= - e

. (~2/R2) ; .
/1 - (a%/b%) and a = the half axis and b = the largest radius of

where e =
the el lipsoid.

**  The notation is that of the original paper. While somewhat different
from present usage in the United States, its meaning, when taken in context,
should be reasonably clear.

*%% Assume a circular streamtube with diameter b equal to The wing span. The
litting force which the fluid applies to the wing results in a def lection of
the streamtube according +o Newton's Second Law of Motion:

o) o

where € is the deflection angle of the streamtube. For small aspect ratios
the wing chord Is comparatively long. Thus the flow inclination seen by
most of the wing is €. Hence for such situations one can take

39



a result readily derivable by means of certain momentum considerations which
18 in good agreement with the avatlable test data for such wings. However,
the conventional fuselage has no sharp sides; hence a temporarily unknown
measure that denotes the width of the separating boundary layer substitutes
for the width b. In place of it we correlate the lift to the maximum
fuselage width bp and introduce a form factor f, the exact determination of
which might be a profitable field of experimental research; presumably it
depends, above everything else, on the cross-sectional form of the fuselage,
on its solidity, and on the location of appendages. Hence we put

1dAg m _ 2

qda -7 k-

The foregoing appraisal of the moments of the fuselage in free stream
faile, because the flow pattern of the wings causes a very substantial
variation of the flow at the fuselage. To begin with, the previously
described frictional 1ift of the fuselage is not likely to exist, since the
wing orientates the flow along the wing chord and even far aft of it with
the result that no appreciable flow component transverse to the fuselage
existe in the real zone of formation of the frietional lift. Hence there
18 some justification in assuming that the theoretically anticipated moments
will afterward actually occur.

First of all the fuselage with wing differs from the fuselage alone
in that the fuselage takes up a very substantial proportion of the lifting

*¥*¥¥continued axE .

For small angles of attack the |ift may then be written

from which

Note that Multhopp uses the symbol A to designate [ift. This result can
also be obtained from the general expression for the dependence of [ift-
curve slope on aspect ratio (sweep angle and Mach number = zero):
Ci = 21AR
Lo " 24 JTF RE

when ARR>0 this expression becomes

Clo =4 =745 =25
Then L = CLa aqs
Ldh T oo
and Sda T 2 b
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" forces ordinarily carried by the wing section in its place. The point of
application of the aerodynamic forces at the fuselage directly due to the
cireulation of the wing, is located at the same place as on the substitute
wing section; separating this air force distribution for the moment leaves
only a free moment which is solved from a simple momentum consideration.

Next, the fuselage is assumed to be sufficiently long, so that, after
fixing a reference plane at right angles to the flow direction that meets
the fuselage at distance x from the nose, the integral over the pressure
distribution of the fuselage portion ahead of the reference plane equals
the vertical momentum passing through this area in unit time. Then, with
B* as the angle in yaw in the reference plane, that is, the angle which the
flow would form with the fuselage axis if the fuselage were non-existent,
and bg as the fuselage width at this point, the lift of the thus segregated
fuselage portion is:

For, if the fuselage is long enough, the flow at right angles to the
fuselage axis may be approximated to two-dimensional, and for the flow at
right angles to an elliptic cylinder the comprised air volume, that is,
the integral

b

ESE ]

w2 2
plvp = vp ) df = pvy 7 by = pvB R

18 (v, and vy, being the components at right angles to the cylinder axis)
independent of the axes ratio of the ellipse. (Note the sketch below.)

r.——x _...,:/comnou SECTION

]
REAM DIRECTION OF LOCAL STREAM

=& AIRPLANE DIRECTION

Since this formula holds true even for a cylinder degenerated to a flat
plate, its approximate use for all cross-section forms appears justified.

* B is the angle the flow direction makes with the fuselage axis. |If these
vectors lie in the x-z plane then B is the angle of attack.
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Differentiation with respect to x then affords:

1dA _md_ 2

qu"zdx(8 bR)
(The air load disfribution along the typical fuselage is shown in the figure
below)

FROM FUSELAGE MOMENTS
[ From FuseLAGE LIFT

== TOTAL VARIATION

By reason of the disappearance of by the so computed total fuselage Lift is
zero at both its ends, hence gives the desired free moments additionally
supplied by the fuselage. This free moment is for any reference point

% d ”
A I B bR xXdx

NTE]

and, after partial integration:

M 2,
R i 2
3 -2 f BbR dx
0

For surfaces of revolution on which the flow is not disturbed by the presence
of the wing, we get, because B = constant

2
kil 2
= - = D dx = - 2 vol.
qB 2 j(;
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or the same result as Munk's for the free moments of airship hulls. It

then might be advisable to apply a correction factor to these free fuselage
moments on Munk's patterm, containing the effect of the finite fuselage
length, except for the difficulty of not quite knowing what slenderness

ratio to apply. The reduction relative to the theoretical value is primarily
due to the fact that the flow at the fuselage ends still varies somewhat

frcm the assumed two-dimensional pattern; and while the rear end contributes
almost nothing to the free fuselage moment, the portions of the fuselage
directly before the wing, which certainly are not encompassed by this reduction
through the effect of the finite length, contribute very large amounts.

Hence the actual value for the correction factor is likely to be far closer
to 1 than Munk's quantity (K, - Ky).

The presence of the wing is allowed for by relating B to the wing
civculation. The change of the moment with the angle of attack is:

'
1 dMr g 2 4B
qaa——-EObR—dx.

The change of the yawed flow with the angle of attack dB/da is
expressed as follows: The flow in the region of the wing is practically
parallel to the wing chord; hence dR/da = 0. Behind the wing the downmwash

reduces the yawed flow; at the fuselage stern in the vieinity of stabilizer

and elevator there is obtained:
_d_Bz]_.ijP_Vi
do da

(This is depicted graphically in the accompanying sketch.)

It is sufficiently exact, when assuming that dB/do rises linearly from the
wing trailing edge to this value. Beﬁbre the wing dB/do is always greater
than 1 because of the prevalent upwash . (This variation is shown in the
graph below.)
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For the determination of the fuselage effect on the lift distribution
of the wing the flow transverse to the fuselage was assumed to be two-
dimensional; then all the mathematical difficulties which the fuselage of
itself would entail, can be removed by a conformal transformation of the
fuselage cross section to a vertical slit. Then the caleulation of the lift
distribution for a wing-fuselage combination reduces to that of an equivalent
wing, wherein the fuselage effect is represented by a change in chord
distribution and also, to some extent, in the angle-of-attack distribution.
Then the conventional methods of computing the lift distribution of a wing
are fully applicable. Multhopp's transform forms the basis of the method
discussed in detail in the next chapter for extending two-dimensional
airfoil characteristics to three-dimensional wings. For that reason it
will not be discussed further here.

As mentioned earlier, modern treatments of the fuselage contribution
to airplane lift, drag, and moments usually represent the flow displacement
caused by the presence of the fuselage through source distributions either
on the fuselage surface (Ref. 23) or along the fuselage axis (Ref. 48},

The three-dimensional source distribution (Ref. 23) can of course be
extended to include the wing, etc. A means to account for lift, such as
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a distribution of horseshoe vortices, must then be added and, finally, a
consistent boundary layer computation must be included in order to complete
the calculation. This is, all told, a very complex procedure. Some details
of these treatments are given in the next chapter.

I+ should be noted that the treatment of the fuselage as a body sur-
rounded by a boundary layer is tenable only so long as the angie of attack
does not get very large. Reference 68 points out that when a thin cone
exceeds an angle of attack of 8° or so vortices begin fo be shed from the
edges in the streamwise direction resulting in a larger-than-expected norma |
force coefficient.

Cebeci, Mosinskis, and Smith (Ref. 109) obtained some interesting re-
sults from their efforts to predict the drag coefficients of axisymmeifric
bodies. Their procedure took the following course:

1. Calculate the inviscid pressure distribution on the body using a
distribution of sources technique (Ref. 23).

2. Consider the aft end of the body to occur at that fongitudinal station
where the pressure coefficient first returns to zero. Note that the inviscid
source distribution method will always yield a stagnation point at the aft end.
The point at which C, = 0 is therefore located somewhat upstream. For the fine-
ness ratio 4-10 bodies which they studied, this point occurs at roughly 90%
of the length. Bodies with blunt traliing edges such as ellipsoids and airship
hul Is were found experimentally to have separated boundary layers aft of the
85%-90% point so that the assumption of C, =0 in this region is fairly reason-
able. Some boundary layer separation also occurs on bodies which taper slowly
to a point because the boundary layer cannot withstand a pressure rise to a
stagnation value. Again, the assumption of separation at about the 90% or
95% point is probably reasonable although the ratio of boundary layer thickness
to body radius at separation (used as indicated below) is different than for
bodies with blunter trailing edges. Data presented in the paper indicates a
pressure coefficient of about +0.1 in the separated flow region.

3. Calculate the boundary layer displacement thickness and momentum thick-
ness at the point taken to be the trailing edge. When the body radius is
expected to be large compared with the displacement thickness, a two-dimensional
value for the momentum thickness is found to give better results.

4. Then use Granville's formula (Ref. 111)

6-)(-
[7 (=+2)+3]/8
¢ - o’ (E) ®
D Ré Ugo
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to determine the total drag of the body. In this formula ro is the radius of
the body at the tail "end", Ro Is the maximum radius, ug is the flow velocity
outside the boundary layer at the tail end of the body, and u, is the free
stream velocity. |f the "end" is chosen to be that point at which Cp =0,
then ug/ue = 1.0.

For a fineness ratio 4.0 body (similar to an ellipsoid but having the tail
end modified to come to a point) the method gave excellent agreement with ex-
perimental results up to a Reynolds Number of about 6 million. Above this
value, the prediction was about 20% low. The skin friction drag constituted
about 90% of the total drag in this case. For the fineness ratio 7.0 body
{same contour) the agreement with experiment was excellent for all Reynolds
Numbers and the skin friction consititutes virtually all the drag.

The airship hull (fineness ratio = 4.2) predictions agreed very well with
experimental results for all Reynolds numbers. Skin friction was again about
90% of the total drag and flow separation occurred at about 904 of the length.

Cebeci, Mosinskis, and Smith comment that thelr studies showed a great
sensitivity to the effective end location on the body to be used in the drag
formulas and to the inviscid pressure distribution used in the drag calcu-
tations. They note also that the two-dimensional analog of Granville's
formula really applies only to the case where the wake is symmetrical with
respect to the body chord. This condition Is not satisfied for a>6°, Thus,
a similar situation can be expected to prevail for axisymmetric bodies.

It would seem reasonable to expect that one might someday develop a version
of Granville's formula for asymmetric bodies more representative of aircraft
fuselages. To do this, however, it will be necessary to solve the three-
dimensional boundary layer equations for the body in question and to develop
a proper averaging method for final average values of 6, -, For Ro» Ug/Ue, and
§*%/8. Such bodies also require more careful scrutiny f6r the presence of and
locations of flow separations. In a recent paper Cebeci, Mosinskis, and Smith
(Ref. 109) address this problem for axisymmetric bodies. Using a finite dif-
ference method of numerically solving the axisymmetric boundary layer equations
which included tranverse curvature effects, they were able to predict the
location of separation with less than 1% error. Their two-dimensional calcu-
tations also gave excellent results for separation on airfoils at high angles
of attack. It should, perhaps, be pointed out at this point that finite dif-
ference techniques for solving the boundary layer equations take on the order
of twenty times the computer time that are required for the less accurate
momentum integral technique described in some detail in the next chapter.

A very recent analytical effort to describe the drag-producing separated
flow behind bodies of revolution is described by Marshall and Deffenbaugh
(Ref. 117}, They first treat three-dimensional steady separation as equivalent
to two-dimensional unsteady flow. This assumption, a heuristic one, Is suggested
primarily by experimental data. They then describe the two-dimensional unsteady
wake by a distribution of inviscid point vortices superimposed on the un-
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separated potential flow solution, suitably modified by diffusive effects. Their
argument for followlng this tack is fhe way the wake is observed to develop with
time. The object of this approach iIs fo avold solving the comp lete Navier-Stokes
equations for the separated flow field by a laborious and lengthy finite-dif-
ference technique. Instead, one pieces fogether by computer an ensemble of
relatively well-known solutions for sub-flow fields which together form the whole.
This is essentially the approach followed by the present work although it dif-
fers in details. Marshall and Deffenbaugh inciude a computer program |isting

and user instructions in their report. They also compared resuitfs obtained by
their method with experimental data. For a prolate spheroid Cn agreed with
experiment for a <10°. Cp agreed well for o€ 20°. No drag computations were
presented, however.

INTERFERENCE EFFECTS

The flow at the junction of a wing and a fuselage is not fhat which
one would obtain by combining the flows about isolated wings and fuselages.
The flow about the wing modifies or influences the fuselage flow and vice
versa. Hence the name interference effects. Klchemann and Weber (Ref. 64)
provide two relatively simple means of determining the effect of the junction
on the inviscid pressure distribution: (a) Ring vortices are placed on the
surface of the body and their strengths are determined from the condition
that their induced radial velocities are proportional to the slope of the
wing-body junction in the streamwise direction; (b} A fictitious body,
obtained by subtracting The wing thickness inside fhe body from the given
body thickness, is considered and is replaced by a source distribution
along the body centerline. Applied with care to situations which the models
represent reasonably well, the methods give results for the interference
velocities which agree well with experiment.

With the advent of the computer, computation of the three-dimensional
potential field can be carried out on a fairly routine basis. Loeve
(Ref. 50) describes a computer program for the calculation of subsonic flow
about wing-body combinations. A three-dimensional distribution of sources
on the surface of the wing.and the body is used to represent the disturbance
to the free stream caused by the presence of the non-lifting wing-body
combination. The source strengths are so adjusted that the flow is always
everywhere parallel to the surface of the wing-body. To treat the effects
of Iift, a system of horseshoe vortices is placed on the camber [ine of
the wing.

The superposition of the flow due to sources located on the surface
of a wing-body combination is also discussed by Hess and Faulkner (Ref. 46)
who give some examples obtained through the aid of a computer program.

Success at treating the wing-body combination would naturally lead one
to attempt a method for the determination of the inviscid pressure distribution
on complete aircraft. The probiem becomes tractable by considering the
aircraft surface to consist of a finite number of panels (hence the name
sometimes applied: finite element technique). As reported by Carmichel
(Ref. 48), the computer program being used at the NASA/AMES Center represents
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(a) body thickness by line sources,

(b) body 1ift by line doublets,

(c) wing thickness by constant source panels,

(d) wing lift by constant pressure panels, and

(e) wing-body inteference by constant pressure panels.

These finite element methods can be considered a "brute force" approach,
in that if one is willing to expend the computer time, the accuracy of the
computation can generally be improved by using more and smaller elements.
Ultimately, limitations in machine accuracy and in the numerical methods
used provide a bound for the accuracy which can be obtained.

A recent correlation of wing-body lift interference effects in provided
by Reference 67. Five effects are noted: (1) body upwash on the local
angle of the wing; (2) local body flow parameters such as dynamic pressure
on the wing characteristics; (3) |ift carry-over from the wing to the body;
(4) wing upwash on the body ahead of the wing; (5) wing lifting vortices on
the body behind the wing. The correlation provided in the paper suggests
that one may find the Iift on a wing-body combination as follows: (1) Find
the lift-curve slope of the wing from

2TAR
2+ Y4 + RIBT(1 + tan? A/RD)

CLot =

where B2 = 1 - M2 and A is the sweep angle of the maximum thickness point on
the wing. Aspect ratio here is based on exposed wing area, i.e. that part
away from the fuselage. C| is then based on the same area. (2) Multiply
CLg Thus found by an interference factor, F, given graphically in the paper.
The present authors have determined that for M < 0.8 this curve can be fit

where d = body diameter and b = wing span. Working through the numbers
shows that most of the effect is I1ft carry over from the wing. Most of the
remainder can be accounted for with Multhopp's transform. (See next section.)

The fact that viscous effects have been excluded from all of these
computations tends to compromise their accuracy or applicability somewhat.
To use them successfully, one must first be sure that no flow separations
are present such as at wing-body junctions.

In addition to the effect on |ift, wing-body interference also complicate
the estimation of drag since the boundary layer flow around wing~body
Junctions, for example, is subject to an external pressure distribution which
is the resultant of all the effects listed above. I+ is not surprising then
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+hat interference drag at subsonic speeds is usually evaluated experimentally
or from correlations of data on similar configurations. A "brute force"
means of accounting for viscosity in evaluating interference effects,
however, would seem to follow from the methods used to calculate the viscous
pressure distributions on airfolls (Ref. 31).

UNIFIED ANALYTICAL TREATMENTS OF WING-BODY CHARACTERISTICS

By 1962 (Ref. 83) the potential flow about a three-dimensional,
non-1ifting body had been determined quifte successfully Through the
expedient of representing the surface by an ensemble of connecting plane
quadrilaterals, placing on each a source of undetermined strength, and
then finding the source strengths by requiring that the total flow produced
by the interaction of all the sources and the free stream be paraliel to a
point on each of the quadrilaterals. A rather large number of "panels"
was found to be necessary to obtain results which agreed well with closed
form analytical solutions for simple bodies. In addition one had fo keep
the areas of all panels nearly the same. Despitfe the very significant
amount of computer time required for even the simplest of such computations,
the prospect of being able fo extend the scheme to include wings, other
protuberances and/or |ift and thereby treat entire practical configurations
at one time was unusually attractive to industry researchers. As a resul?
there are now a number of numerical methods and associated computer
programs for treating all or part of the wing-body problem. Among these
one may cite References 84, 85, 86, 87, 88, and 89. The differences
among the various methods cited lie principally in the numerical procedures
emp loyed. Indeed, since these bear so heavily on the economic practicality
of the methods, it is not surprising to find a paper (Ref. 93) dealing
entirely with this facet of the prediction procedure. Finally, the review
article by Widnall (Ref. 90) Is quite helpful in distinguishing among the
approaches to these and other aspects of the problem used by 19 other authors.

The use of such calculation procedures to examine other aerodynamic
characteristics (stability derivatives for example) of complete configurations
is discussed in References 91 and 92. Here also the procedures are useful
for determining only those contributions fo the parameter values which do
not depend significantly upon viscous effects. The ability fo integrate
the determination of these effects into the procedures in a rational yet
computationally-manageable way seems to be a skill yet fo be learned.
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‘A THEORY FOR THE PREDICTION OF LIFT, DRAG, AND PITCHING

MOMENT OF LIGHT AIRCRAFT WINGS

INTRODUCT {ON

One of the fundamental tasks in aircraft design is the estimation of the
forces which the air will exert on the vehicle during flight so that the
structure may be made appropriately strong, the wings may be made sufficiently
large to carry the desired load, and the engine may have sufficient power
to propel the vehicle at the desired speed. Because no two masses may
occupy the same space at the same time, the airplane must move air out of
its way temporarily as it flies. To move air one must exert a force on it.
Even the mere "sliding" of the air over the skin of the aircraft requires
that one exert a force to overcome the friction.

To represent these phenomena quantitatively we consider a fictitious
cube through which the air is moving. The cube is fixed to the airplane.
Now in general, the velocity of the air moving across one face of the cube
does not have to be the same as that moving across the opposite face. Thus
we say that in any one of the three principal directions there is a net
flux of mass across the cube boundaries given by

auj
p —_—
8xi

where p represents the density of the fluid; u, the velocity; x, the length
of the cube; and i indicates that it applies to any one of the three
principal directions.

We assert that for the purpose of this analysis the volume occupied by
a given mass of fluid always stays the same. As a result, if more net mass
flows into the cube in one direction more must flow out in another direction.
A mathematical statement of this concept is

du oV ow  _
pg—)z+p-37+p37—0 . (1)

Newton's Second Law of Motion states in effect that the force required
to change the direction of a mass, Z.e. move it out of the way, is equal
to the product of its mass and its acceleration. This force can be assumed
to have three components, Z.e. one along each principal axis, so that we
should write three mathematical statements or equations to describe the
complete picture:

F] = majy
F2 = ma, (2)
Fz = mas

50



Now, acceleration is a time rate of change of velocity. But if the
velocity crossing one face of the cube is different from that crossing an
opposite face at the same time there has been a change in velocity with
distance. The product of this change with distance and the velocity at
any point in the cube is also an acceleration. For acceleration atong x,
one may write

_du, du, du, du
ap TRt tua T Yoy TMaz (3
For the time being we will ignore the force applied to the airplane

(and therefore also to the air, according to Newton's Third Law) by the air
siiding over the skin. We note that air is caused to move by a pressure

difference. 1In fact, the greater the pressure difference per unit dgistance
the greater will be the force which causes the air to move. Thus, according
to Equations (2) and (3) we write
_op o feu g duyy Buy, By
ax e ot Yo Y ay "5z
SN 3 5 av |
- oy av oV oy
Ty T °F Kk v 3y Tug T 3z | (4)
- -
9P aw aw aw ow
i =t w =t UtV
5z - Plat T Yar T Yk T Y by ]
At this point we will assume that the aircraft velocity is steady—

unchanging in time—and that the speed of the air flowing over the airplane
depends only upon ifs position with respect to the aircraft. This assumption
permits us to ignore fterms of the type 3u/dt and to write Equation (4)

as fol lows

~ -
I Y du ., du ., B
ax | 9x oy oz |
op _ [oav, 3w, o]
i v p|v 3y + W N + u 3% | (5)
o [ aw . ow . dw]
“ez TPl Wzt Ut Vay |

We will need these equations later to relate the pressure forces on
wings and fuselages to the velocity of the air moving around them,

Let us now examine the imaginary cube through which we assume the air
to be flowing. Consider one face as shown in the skefch below:

y
A u*rég-dv
——
4 e
—— X
—
u
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By assuming that the air slides over the surface of the airplane
without applying any force to it we have in effect assumed that the air has
no way of transmitting shearing forces to itself or to solid bodies with
which it comes in contact. The measure of this shearing action is the
viscosity of the fluid. We have assumed therefore that air is inviscid.
Since we have no way of causing one fluid cube to shear agalnst another it
is reasonable to conclude that there is no way a fluid cube can be caused
to rotate. From the sketch we see that a mathematical statement of this
conclusion is

udx+(v+-§%ﬁ-dx)dy-(u+§%dy>dx~vdy=0 (6)
Simplifying the equation, one has
3 el
5% dxdy - sg-dxdy =0

or
ou _ 9v _
3y~ ax o . (7N

Similar expressions can be obtained for the other five faces of the cube.

We move now to consider the consequences of the condition represented
by Equation (7). A general differential d¢ can be written

d¢ = udx + v dy + w dz . (8)
Since
T 1)
d¢ ™ dx + ay dy + 37 dz » (9)
_ 3¢ L -3
=gt VB, (10)
But 9%¢  _ 3%
Ixdy ~ dyax
Therefore 3u_9dv  3v _dw 3w _3u ' (11)
8y ' 3w 3y’ x 3z °

Consequently, requiring that the fluid be irrotational means that do is

an exact differential. The integral of an exact differential is independent

of the path of integration and depends only on the value of the function at

the two end points. We say then that for an irrotational fluid a function ¢,
called a velocity potential, exists such that Its partial derivatives represent
the components of the fluid velocity. See Equation (10).

Using this result in Equation (1) one may write

32 32 3%¢ .
&g+gy;g+§;g_o (12)
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This partial differential equation is called the Laplace Equation and is one of
the most studied in the mathematical literature. Note that there is only one
dependent variable. Thus if one can find a function ¢ which satisfies the
equation and the boundary conditions he shouid be able to find the velocity
around a body represented by the boundary conditions. Note that since the
Laplace Equation is linear, a sum of solutions is also a solution. We shall
make use of this fact to represent complex bodies as a sum of simple solutions.

For the calculation of the lift and drag of aircraft wings we will
restrict our attention for the time being to flow in a plane aligned with the
airstream. Therefore we take w = 0 and ignore derivatives with respect to z.
We postulate that a function

L -1 Y
¢ = > tan < (13)
where T is a constant, is a solution of the equation
2 2
3__<22+__fhaz=0, (14)
ax y
Now
) Ty
= 2 7
ax 2m x° +y (15)
3 I __x
dy 2m x? +yr !
hence
9% _ _ I y(=2x)
ax? 2m (x? + yz)2 (16)

3% _ I _ x(=2y)
ay2  2m (x2 + yD)?

The sum of the two equations in (16) is seen to equal zero and thus Equation
(13) is a solution of Equation (14). The figure below depicts this function.

A — Lines of constant velocity

--- Lines of equal value of
velocity potential

X -t
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For a given value of T the velocity decreases as 1/(x2? + yz)% . This type
of flow is called a vortex. |t is irrotational. The quantity T is called
the vortex strength.

I'f the vortex is not located at the origin the expression for the
potential becomes

=L 1Y~ Yo
¢ = > tan x = %,

(17)

where (x5, Yo) is the location of the center of the vortex. Corresponding
expressions for the velocity components are
__r Y -~ Yo

2m (x - x0)% + (y - yg) 2

u =
(18)
T X - %o

27 (x - xo)2 + {y - yg

It

)2

Now suppose we place a number of vortices in a plane and ask what is the
velocity induced at a point (x, y). We should be able to assume that the
vortices may all be freated separately and that their contributions at a
point may be summed to find the net velocity. We write therefore

_ | (y = yop) TN
us=--- 3 z
2 g~ (x - on) + (y - yON)
(19)
—_ 1 (x - Xon) TN
21 = (x - XON)2 + (y - yoN)2

where k is the total number of vortices.

REPRESENTATION OF AN AIRFOIL IN TWO-DIMENSIONAL FLOW

Consider then the possibility of placing the vortices on the perimeter
of an airfoil. |f we can choose the strength of each vortex properly we should
be able fo make the net flow velocity along the airfeil surface satisfy, at
least approximately, the boundary condition that the flow be parallel to the
airfoil surface. To do this it is necessary to consider in addition the
contribution of the free stream to the total flow picture. The velocity
potential for a uniform stream is readily shown to be

¢ = -Vx . (20)

Hence, the effect of the free stream is to add a velocity V to U. The
boundary condition may then be stated as

-1 v ~ -1 fd _
tTan (V " U)_ tan (a%)wing o
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or

v - (dy - tan o (21)
V+1T dx / wing

where a is the angle of attack of the wing chord line.

ay is the slope of the wing surface (measured relative to the axis
9%/ wing

system) at the point where the boundary condition is to be satisfied. The
use of this notation follows from the concept of describing the surface by
the equation y = f(x). The local value of the tangent to this curve is

of course given by dy/dxlx.

In Equations t19) I\, the vortex strength at each of the k points, is
unknown and must be found by applying the boundary condition k times, that
is, by writing k equations. Since we can accomodate no more than k values
of the surface slope, one usually depicts the airfoil as consisting of straight
| ine segments connecting the vortex centers. For this reason one usually
desires k to be large in order to describe thick or cambered airfolils
accurately.

The concept for representing airfoils and the significance of the
various symbols used in the text fis illustrated in the skefches below.

PHYSICAL AIRFOIL SHAPE
Iy

L

6 Ts I4 Is © T
REPRESENTATION OF THE DISTURBANCE CAUSED
IN A UNIFORM STREAM BY THE PRESENCE OF
AN AIRFOIL THROUGH THE USE OF A DISTRIBUTION
OF VORTICES OF DIFFERENT STRENGTHS PHYSICALLY
SITUATED AS IF THEY WERE LOCATED ON THE
AIRFOIL SURFACE. ARROWS INDICATE DIRECTION OF
VORTEX FLOW AND DOTS SHOW LOCATION OF LINE
VORTICES EXTENDING TO INFINITY INTO AND OUT
OF PAPER.
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(x¥o 2
RELATIONSHIP OF VORTEX CENTERS

(xg1Yo) TO POINTS (M) AT WHICH
BOUNDARY CONDITIONS ARE SATISFIED

y A 1y

VELOCITY COMPONENTS,
u AND v, INDUCED AT
POINT M BY VORTEX

AT O
I Ty
—ly V
slope of surfoce
* (%)
Ia “\dx/3

YA \v I

u
VELOCITY COMPONENTS
r INDUCED AT M BY
' VORTEX AT (@
I3
|
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y 4

VELOCITY COMPONENTS
INDUCED AT M BY
VORTEX AT (3®)

I 1,,3

— i V
slope of surface
d
X = (<Y
T 4 - ( dx ) 2

VELOCITY COMPONENTS
INDUCED AT M BY
VORTEX AT @

T3

SUM OF INDUCED VELOCITIES
PLUS FREE STREAM

AT M IS PARALLEL TO
SURFACE .

ANGLE OF RESULTANT IS
EQUAL TO ANGLE SURFACE
MAKES WITH STREAM
DIRECTION LESS a.
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Note that each vortex on the entire airfoil contributes Its share to
the net velocity which is produced at each M. Note also that we have
chosen to bound each |ine segment by a vortex. This choice facilitates
the description of point M in terms of the vortex locations as may be
seen in the analysis below. We could have chosen instead to represent the
airfeil by a group of line segments, locate a vortex at the 1/4 point,
say, and satisfy the boundary condition at the 3/4 point on each line segment.
Such a procedure requires that one first find the equation of each line
segment and then locate the vortex and the control point (point where
boundary condition is satisfied) on it.

Let us call the right-hand side of Equation (21) Bm, the tangent of the
required flow angle at point M. M has coordinates {(x, y). Let us also call

{y . = von)
MmN = 3wy (22)
(xm - xON) + (ym - yON)
o XON) =b (23)
(M = xop) %+ (M = vop)? MN -
then
5, = b”I'] + b]zrz +-'°b]NFN +"'b]krk
] - LI ] LN 3
o Vit aply agply ATy ey Ty
. (24)

. bial'y + byplp +ooebply +o 0o bylk

K vV + ak]f‘1 + ak2F2 +-"akNFN +°-'akka

represents the system of equations which must be solved to find all the I''s.

To evaluate ayy and by, in Equation (24) we need to locate points M in
relation to (x5, yoly. For convenience we will choose M halfway between
successive values of (xg, yoly. Now the line which extends from Xxoy, yop To
Xop» Yop is described by

YOZ - YO]
Y = Yo, YT (x - XO1) . (25)
02 o1
If we let
X - X
o o)
X:XO1+ 22 1;
then y02 - yo]
Y = Yo + — (26)



By generalizing Equation (26) to

(ongy = XoN

-

XM = XON +

N

YM = Yoy * 2 (Yonyy = Yop! s (27)
we can find the coordinates of all except one of the points where the
boundary conditions must be matched.

The reason one boundary value cannot be found by this procedure is that
by tracing line segments between successive points we draw what can be termed
an open polygon. Such a polygon has one less line segment than points. For
example, if one numbers four arbitrary poinfs and draws |ine segments from
pt. one to pt. ftwo, from pt. two to pt. three, and then from pt. three to
pt. four, he will have only three line segments connecting the four points,
As a result, the maximum value of M is therefore k - 1. Note that if N = k
there is no k + 1 point. We can resolve this difficulty by clesing the polygon
and giving one point two names, Z.e. N = 1 and N = k. While this step does
not provide us with an extra line segment at which to match the boundary
condition, it does permit one to invoke the physics of the problem to reduce
the number of unknown T'y's by one and thereby obtain a determinant system.

At this point the question is sure to arise in the mind of the unini-
tiated reader, why could not one simply locate one vortex and one control
point on each line segment? The system is then completely determinant and
there is no need to worry about finding another constraint. Unfortunately,
such an approach encounters difficulties satisfying our present view of
the physical situation. Consider for example the fact that with such a
mathematical model we know the flow to be parallel to the line segments
only at the control points. We do not know what the direction or magnitude
of the resultant flow is anywhere else. The flow could very wel! cross
the airfoil "surface". In particular we must be concerned about the
situation at the trailing edge. Now we call one boundary for a quantity
of flow a streamline. Far from the airfoil, or course, the stream!lines are
paraltel. As the flow approaches the airfoil one streamline marks the exact
line above which all the flow moves over the upper surface of the girfoll
and below which all the flow moves over the lower surface of the airfoil.
This line is called the stagnation streamline because at the point where it
intersects the airfoil surface the flow velocity is exactly zero or stagnant.

The flow in the immediate neighborhood of this line obviously cannot
move into the surface and it splits, half of it moves up and half down along
the surface at this point with a net velocity of zero. Now, there must be
another point of this type on the lee side of the airfoil where the flow
around the airfoil comes together and leaves the surface. Where is this
point located? Note the accompanying sketch.
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Point A here Is the forward stagnation point. |t would seem reasonable to
focate B such that the distance the flow would have to travel between A

and B over upper surface would be equal to the distance from A to B using
a lower surface route. For low drag, alrfoils usually have trailing edges,
S, with very small radii of curvature. |f the stream is to remain attached
to the surface and flow smoothly around this sharp corner, then it must
change directlion very rapidiy. This means there must then be portions of
this reglon where the velocity is very high and, according to Equation 31,
where the pressure is very low.

If the fluid experlences no frictional forces, the kinetic energy of
its motion at S Is just sufficient to drive it to the stagnation point B.
Viscous forces, which are present in the actual! case, retard this motion
so that the fluld does not quite reach B but stops somewhere on the way.
In fact, anytime the fluld does not quite reach B whether because of
viscosity or not a counter flow Is set up (see sketch below) as some

, s

fluid seeks to move from the high pressure area at B to the low pressure
area at S, This tends to separate the flow coming around S from the
upper surface. The action of these two flows creates a vortex. This
vortex, which is formed along the whole trailing edge of the airfoll,

is unstable and separates from the trailing edge. |t is carried along
by the general motion.

According to Helmholtz's theorem, vortex cores are closed figures.
Thus there must be a net circulatory flow around the entire alrfoil in
the clockwise direction which is attached (at infinity) to the vortex
shed off the trafling edge (see following sketch). Inclidently, this
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“Y<VORTEX SHED OFF
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flow pattern can be seen in photographs taken of an airfoil just as it is
set into motion. The flow is made visible by inserting the alrfoil verti-
cally into stagnant water on which finely ground aluminum powder is
floating. Such a vortex is shed everytime there is a change in lift.

Simultaneously with the vortex shedding process and the creation of
a net clockwise circulation around the airfoil ifself, the stagnation point
B is displaced until it resides approximately at S. The fluid then no
longer moves around the trailing edge but flows off tangentially with
equal velocity at both sides. The assumption that the flow will leave the
trailing edge smoothly was put forward independently by Kutta and Joukowski.
It is the salient point in the theory of |ift because it determines the
magnitude of the circulation. By means of this hypothesis the whole problem
of lift becomes purely mathematical: one has only to determine the amount
of circulation so that the velocity of the flow leaving the upper surface
at the trailing edge is equal to that of the flow leaving the lower
surface. The rule stated in this way applies to wings with zero vertex
angle. |f tangents to the upper and lower surfaces form a finite angle,
the trailing edge is a stagnation point. Most airfoils with which we
will be concerned have finite trailing edge angles; according to the Kutta-
Joukowski hypothesis the flow velocity and hence the circulation at the
trailing edge of these airfoils is zero. If we locate the first of the
vortex filaments describing the airfoil at the trailing edge and require
that the net velocity at this point be zero, we must also choose the
strength of the vortex filament at that point to be zero since the velocity
at the core of a vortex is infinite. At first thought one would simply
take 'y = Tk = 0 but thls would mean that there is one more equation in
(24) than is necessary, something we know is not true. To skirt this
mathematical problem we take

ry=-Tk - (28)
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Obviously, 1f we have two vortices located at the same point with equal and
opposite strengths the sum of those strengths (which is what we would see
physically) is zero. Through this device we satisfy the requirement that a
stagnation point will always exist at point 1. Simply saying that 'y = Ty
does not insure that I'y will come out to be zero even if point 1 is at the
trailing edge. Finally, with these constraints Equations (24) now read

1
B] =v [(b]] - B]AH)I‘] + (b]z - B]A]z)f‘z +"’(b]N - A1NB])PN +
. "'(B]a1k - b1k)I'1] (29)
N 1
Br-1 =¥ [(b(k-1)1 = Br1a(k-1 T + (b(k-1)2 - Bk-12(k-1)2)T2 +

**t(D(k-1IN = Broq@(k-1)NIIN +o o2 (Bk-13(Kk-1)k - b(k-1)k)F1]

Equations (29) contain k - 1 distinct values of I'y and k - 1 values of
By so that the system is solvable for all k - 1 values of Iy. Admittedly,
when k is a large number this is a task which is practical only when one lIs
able to use a digital computer with sufficient storage (memory) to carry out
the solution process. Generally, the process should be one able to accommodate
a system of 65 or more simultaneous algebraic equations. The most favored
method for solution of such large systems is a generalization of Cramer's
Rule, familiar to college algebra students as a technique for solving systems
of 3 or 4 simultaneous algebraic equations. Fortunately, the nature of the
matrix form of this large system is such that the solution is less difficult
than one might expect to encounter for systems of this size. Those readers
interested In the mathematical details of the numerical methods one might
employ for this purpose are referred to texts and papers on matrix algebra and
in particular to papers on matrix inversion techniques. Since these techniques
are not elementary (they are, fortunately, usually available as standard
computer |ibrary programs) and since their details are not crucial to an
understanding of the physical reasoning used to formulate Equations (29),
they will not be discussed here.

A cautionary note regarding Equations (29) should, perhaps, be injected
at this point. In their formulation, it was assumed that the coordinates of
the vortex centers were measured from a fixed reference. Therefore, when the
angle of attack changes, the locations of the vortex centers as well as the
coordinates of the center of the connecting line segments change. In other
words, ayy and byy depend for their values upon the airfoil angle of attack.
On the ofﬁer hand, the local airfoil slope, ((dy)/(dx)) ing can be taken as
constant for all a since the term tan o Is substracted ¥rom the slope to
calculate the boundary condition, Equation (21). An alternate formulation
considers the airfoil to be fixed and the flow to rotate as o changes. The
left hand side of Equatlion (21) will then read

V+Vsina
U+ Vcosa

while the right hand side will no longer have the term tan a.
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In addition to the necessity of locating two vortex filaments at the
trailing edge as discussed above, there is a second geometrical aspect which
should be considered in choosing the locations of the other vortex filaments
by which one represents the airfoil. This aspect is the surface curvature.
Obviously, the |lne segments between filaments must be more numerous in
regions of high curvature if one is to describe the surface accurately. Thus,
for most airfoils the preponderance cf points should be located near the
leading edge. One can quantify this procedure by specifying that the distance
from the line segment to the surface should never exceed a fixed, small
percentage of the airfoil chord (distance from leading to trailing edge).

The orientation of the local surface to the stream also has an effect on the
vortex filament spacing. Surfaces nearly parallel to the free stream can be
represented more accurately with a few filaments than surfaces with large
Inclinations.*

The solution of Equation (29) is k values of I'y with I'1 = - T',. Now
that we have these values we ask how we may use them to find what is really
of interest to us: the local pressures on the surface of the airfoil. We

begin by considering how one might write a two-dimensional version of Equations
(5) in a coordinate system with one axis tangent fo stream |ine and the other

normal to it. |In such a coordinate system (5) reduces o
aP ~ 3T
-2 - L (30)
as P 3s

where U is the total fluid vejocity and s is the distance along the streamline.
Equation (30) is easily integrated to yield

P. =P+ 4 o . (31)

Py is the stagnation pressure along a streamline, that is, the pressure which
would exist if the fluid were brought to rest. |t is usually assumed that

the disturbances produced by the airfoil decay to zero at great distances
upstream and downstream of the airfoil, Z.e. at these stations. [f the flow

is uniform then the stagnation pressure must be the same along all streamlines.
Since there is no mechanism in an irrotational, incompressible, inviscid flow
by which the stagnation pressure can change, Pg is then the same on all
streamlines throughout the flow field. It is easily evaluated since Py, P,

and V are known in a given 'flow.

* One might postulate that by representing both the boundary on which
parallel flow is to be required and the vortex strength explicitly by
continuous functions of the surface coordinates with continuous derivatives
everywhere, the intervals over which these functions are fitted can be
significantly larger, for equal accuracy, than the straight line segments
(with their delta-function-Ilke circulation strengths) wused in the present
approach. Larger segments, of course, means fewer (although perhaps more
complex) equations to solve. Hess (Refs. 81, 82) studied this question at
some length. He begins with the implicit assumption that one would

always wish to represent the distribution of vorticity over the alrfoil
surface as a continuous distribution. The strength of the vorticity
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¥ CONTINUED

over any segment of the airfoil surface is then an integral of the vortex
strength per unit length over that segment. Since this integral equation
usually cannot be solved in general, one usually seeks to find approximate
means of solution. Hess states that "the most straightforward means of
evaluating the integral is by means of a quadrature formula that replaces
the integral by a weighted sum of values of the integrand evaluated at
certain points. That is, the effect of a continuous singularity distribution
is approximated by a sum of concentrated point singularities...This is not
a satisfactory procedure. The basic difficulty is that the velocity
approaches infinity more rapidly in the neighborhood of a point singularity
than it does near a finite-strength singularity distribution on an arc

of a curve. Thus the spacing of the quadrature points must be small
compared to all physical dimensions of the boundary. This is not practical
for airfoils which are often quite thin." Near the trailing edge,
particularly, the problem is quite difficulft. "Adjacent to the corner the
ratio of the normal distance between two points to the spacing between them
is approximately the sine of the trailing edge angle, no matter how many
points are used."

spacing between points

)

normal distance between points P

As a result, the velocity at P on the lower surface of the airfoil in the
sketch above is dominated by the contribution from I'p, whereas in the
integral representation the contribution from vorticity at some distance
from I'y will still be significant.
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* CONT INUED

To illustrate these concepts consider the following example. Take
two flat plates which join at an angle of 3°.

Place vortices I'y and I'p 10 units apart as shown and assume I'y = I',.  Now

I', induces a velocity which is parallel to the lower plate at P which has a
magnitude equal to (I'/2m)(1.91) while Ty induces a velocity at P which is
normal to the plate and has a magnitude equal to (I'/2m)(0.1).

The integral representation for constant vortex strength per unit
fength is given by

1

10
V  — f L In ¥1,002742 x% - .05483 x + .2742] dx
27 0 10

~L
“L ()

Note that in this example the magnitude of the induced velocity at P is,
as stated by Hess, less for a continuous distribution of vorticity than
for a distribution of concentrated point singularities. |t would appear,
therefore, that the use of continuous distributions of vorticity would
lead to less "wavy" flows in the neighborhood of airfoll surfaces and is
therefore desirable.
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* CONTINUED

Hess systematically investigated the effectiveness of higher order
approximations of the integral equation, including the use of curved surface
elements and parabolically~-varying vorticity. He found that the approach
using flat elements with constant singularity is mathematically consistent
as is the next higher-order approach with parabclic elements and |inearly-
varying singularity strength. The popular approach based on flat elements
with linearly-varying singutarity strength he shows to be mathematically
inconsistent. Hess concludes that "(1) the higher order solutions give
very |ittle increase in accuracy for the important case of exterior flow
about a convex body; (2) for bodies with substantial concave regions and
for interior flows in ducts, the use of parabolic elements and |inear
varying singularity can give a dramatic increase in accuracy; and (3) the
use of still higher order solutions leads to a rather small additional
gain in accuracy."

The results which Hess obfained for the surface velocity on a
semi-infinifte body whose forward portion is a semi-circle concave to the
flow has a particular bearing on the question of whether the use of higher
order solutions can lead to shorter computational times for equal accuracy.
Using 36 curved elements with linearly-varying source strengths he was
able to recover the values given by the analytical solution. Even with
five Times that number of straight elements with constant source strengths—
and, more importantly, one hundred times the computing time—he was not
able to recover the correct values. The results were gqualitatively correct
but were quantitatively in error, particularly on the centerline.

Hess also studied the use of the various solutions on a highly
cambered Karman-Trefftz airfoil for which an analytical solution is known.
Since the lower surface of this airfoil is concave, use of the higher order
method was found to be necessary in order to obtain good agreement with
the analytical resulft.

The implications of Hess's work, so far as the prediction of airfoil
characteristics is concerned, are (1) for conventional airfoils {ittle
reduction in computational time—for the same accuracy—can be achieved
by using fewer curved elements and |ineariy-varying singularity strengths,

{2) for unconventional airfoils—airfoils with concave areas on their lower
surfaces—use of the higher order solution will yield substantial improvements
in accuracy for a given computational time.
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Now the velocity along a streamline is given by

YIV+ D2 +ve =T (32)

so that the fluid pressure which acts normal to the airfoil surface at point
(x, y) is simply

P=P, ov2 - & [T+ V)2 + V2]
or (33)
P =P, -1 p[u®+ 7V + 2WV]

0

1
T
+

[

Note that we have used all of the Iy found from a solution of (29) to determine
T and V at a set of points (x, y) according to Equations (10). It may be

well to note here that requiring the flow generated by the system of vortices
to be parallel to the surface at the mid-segment points does not guarentee

that 1t is also parallel to the surface everywhere. Thus it is prudent fo
select x,y for the pressure computation to be those same mid-segment points.
Pressures at points inbetween are probably best found from a third order
polynomial fit to four successive calculated values.

The net |ift on the airfoil is obtained by integrating the components
of the pressure which are normal to the free stream direction over the entire
surface of the airfoil. Mathematically, this process can be expressed by

-,

(34)

- - d
L = cos afP(x) cos ,:Tan ! (% x)] dx - sin afP(x) sin [Tan ! (a—%

The 1ift coefficient is then L/ipVZ3c.

To perhaps aid the reader In grasping some of the foregoing concepts,
we will digress momentarily from the main thrust of our argument, retrace
some of our steps and approach the calculation of airfeoil |ift from a
slightly different direction. We wiil employ for this purpose the analysis
given by von K&rm&n and Burgers in Volume || of the six volume set,
Aerodynamic Theory, edited by W. F. Durand, (Julius Springer, 1935).
Equations (19) when exprqssed in polar coordinates become

k ro sin (8 - 6p,.)
Vi = z: gﬂ - SN ON
N=1 2T r¢ + r2 - 2rr. cos (8 - 8. )
ON On On
k TN ro- rON cos (6 - BON)
vo=- 3 —
8 —1 2T r2 + r - 2r -
N=1 6N roN cos (g eON)

In these expressions it is assumed that the positive sign of the circulation
corresponds to a clockwise rotation of the fluid and that the nose of the
airfoil points to the left into the oncoming stream. vg is positive in

the counterclockwise direction. We now expand the velocities in a series
containing decreasing powers of r. These series are convergent so long
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as r is greater than any of the values ry, ro,..., rn» that is, so long
as the point where we wish to compute the vefoclfy components is further
from the origin than any point on the airfoil surface. Under these
conditions, the first term In the denominator of each series above is
dominant and one may write

K T
= N :
Ve T2 &g% on TON sin (6 - BON) + higher terms

3

1 ):kj ul L 2'5_: . (8 - 6. ) + higher +
- - T o, COS - gher terms
TN T T & ON ON

Vo

We now assume a uniform and parallel fluid motion with velocity
component V, and V. fo be superimposed on the flow produced by the vortex
fitaments., We appr to the fluid within a circle of radlus r = K the
theorem that the difference between the fluid momentum entering the clircle
and that leaving it Is equal to the resultant of the forces acting on the
fluid. The forces involved are (a) the pressure distributed along the
circle and (b) the forces acting between the vortices and the fluid. The
theorem may therefore be stated thus:

Resultant of forces = Resultant of pressures - Change in momentum

% —fF’ cos 6 ds - pfwnwx ds
Fy -fP sineds—pfwnwy ds

where Fx’ F., are the resultant forces in the x and y directions, 8
locates w‘heyelememL ds and

or F

Wn=chose+Vysine+vr
wx=Vx+vrcose-vesin6
wy=Vy+vrsin6+vecosB.
Then 2m 2m
Fx=-K.{; F’cosﬁde—pK-g (chose+Vysin9+vr)
. (Vx+vr cose+v9 sin 6)de
2T 21
Fy=-K%' Psinede—pK‘g (Vy c0s 6+ V sin 8 + vp)

. (Vy + Ve sin 6 + v9 cos 6)de
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if K is large, then

Further, the integra

1
2

L
2

Vi

2 2 . 2
p(V)< + Vy) - 3p(V, + v, cos 6 - Vg sin 6}

sin 6 + Ve cos 6)?

p(vﬁ + vg + 2v [V, cos 8 + Vy sin 6]

+ 2ve[Vy cos 6 - V_ sin H))

- %p(Vy + v,

Iy
™

k
]
>0 and v > - X éé% 5—

from 0 to 27 of sin 8, cos 8, and sin 6 cos 6 are

all zero so that in computing F, and F one need do only

F, = K

which become

. _ 1
Then with ve ==X

2m
F=K_(‘; %ZVSVycoszed8+KpJ(; v.V sin? 6 do

Y

2m
2

8y

21 27
B X

f B2vV sinzede—pKf v.V_ cos? 8 d6
o 2 & 0

F

Kp 2m v V
X p ey

F

y -Kp 2w v

8VX

k. Ty
2. 5. we have
N=1

k
Fo= -pV, 20 Ty

in the case where the fluid motion is parallel to the x-axis we see that
VX = VY and Vy = 0 sc that the resultant force or lifft,

pv $ I‘N , is normal to the direction of the stream. Since Joukowski

found that the |ift of an airfoil is pVI, it is evident that the net
circulaftion about the airfoil is the sum of the individual vortex filament

strengths.

A simplified form of Equation (34) can also be used to show an
interesting relationship between the vortex filament strengths and the

surface velocities.

we could take for o
segments

Since

P(x) = P -%[P 72+ 20V

o0

0 and an airfoil surface made up of straight line
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L =fP<x)(A’i) dx
As [ «

where- (2—:) represents the cosine of the angle formed by a particular
P .
fine segment and the chord line. If we are willing to say that this cosine
is always near unity then we may ignore the v-component in the velocity and
also u? in comparison with 20V. With these approximations we have for the
lift ‘
= 0 (Zuv) ], (Ax) d

L = Cp, - 5 (2u )], (bx x 9%

Since we are discussing a surface made up of line segments (Ax)_ and we

assume that the pressure is constant over each |ine segment, the integral
is readily approximated by a series:

L = Zx: VT, (Bx)y o * Xx: VT, (0,

Note that .9{Pw dx = 0. From a comparison between this expression for the

lift and that in terms of the vortex filament strengths where

we see that =

!n other words, the velocity induced along a segment of the airfoil surface
is equal to the vorticlty perunit length existing over that segment.

Some comments concerning the results of the procedure leading to (34) are
appropriate at this point. First, it must be recalled that the procedure
considers air to be an inviscid, incompressible fluid. Thus, there is no
dissipative mechanism available to produce a drag. Hence, the integral of
the streamwise components of the pressure force on the airfoil must, if the
calculation has been carried out accurately and correctly, be zero, or in
mathematical terms,

. -1 {d ’
sin afP(x) cos [Tan (BS% x)} dx
+ cos afpm sin [+an" (ﬂ{-'x):l dx £ 0.00005 .

Carrying out the procedure indicated by Equation (35) is an excellent way to
check the accuracy and validity of the method used to obtain a numerical
result for Equation (34),

(35)

A second anomaly resulting from the use of an inviscid theory is that
one cannot predict the approach of the phenomenon pilots call "stall."
Physically, stall is characterized by a loss of |ift and a sharp increase
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In drag as the wing's angle of incidence fto the stream is increased. Thus

an airfoil exhibits a maximum |ift coefficient just prior to stall. I+
usually occurs at angles of Incidence to the airstream (a) in the neighborhood
of 16° to 20°. The inviscid theory, on the other hand, will predict maximum
lift at a+45°. Despite this deficiency, the inviscid theory will generally
give quite satisfactory predictions of 1ift for a < 6° or 8°.

TREATMENT OF VISCOUS EFFECTS

I+ should be evident from the previous comments that to be able to make
a realistic estimation of aircraft performance one must find some means tfo
consider In the calculations the property by which air is able to resist the
motion of aircraft and propellors: viscosity. |t has been known for a long
+ime that inclusion of this property in the equations describing fluid motion
makes them (a) non-linear, (b) higher order, (c) consider energy transport,
and, consequently, a pressure-dens|ty-temperature relation—factors which make
them virtually insolvable in general. In one of the greatest contributions
to the analytical description of physical reality, Ludwig Prandt| argued in
1904 that for most practical applications one could consider the effects of
viscosity to be confined fo a thin layer of the fluid immediately adjacent
to the alrfoll surface which he called the boundary layer. Prandtl argued
that the remainder of the flow field can be treated quite adequately by
retaining the fiction that the fluid is inviscid. If we assume that we have
an acceptable method to calculate the iift on an airfoll-like body we mus?
ask ourselves how can we include this viscous boundary layer in the treatment
and what are its effects.

The concept of viscosity means that there is a transport or communication
of the momentum of the fluid in one layer to the fluid in the adjacent layer.
Whereas In inviscid theory we assumed that the fluid layer immediately adjacent
to the surface of a flat plate has the same velocity as that far from the
surface, we recognize that the stationary character of the surface must be
known to the fluid immediately adjacent to It. This fluid cannot be moving
very rapidly with respect to the surface because the molecules lose a
significant portion of their tangential momentum in striking the stationary
surface. This change in momentum appears as a frictional force on the
surface. The layers outside the one closest to the surface, however,
continually feed in additional momentum so that the net result is the
development of a gradation in fluid veloclty from the surface to the edge of
the boundary layer. At the surface the velocity relative to the surface is
zero. At the outer edge of the boundary layer the velocity is equal to
that in the inviscid flow. See the foliowing sketch.

Shown on the sketch Is a graph of the variation of fluid velocity with
helght above a solid surface. ug is the inviscid free stream velocity. A
similar graph can be constructed at gach streamwise location along the
surface. Generally, the height over which the fluid velocity moves from
zero to the inviscid free stream value, the distance labeled § on the graph,
increases as one goes downstream.
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Looking at the sketch one notes that the two cross-hatched areas are
approximately equal. This suggests that one could say, for purposes of
modeling, that all of the fluid mass in the boundary layer is really con-
centrated in a region of uniform velocity u, extending from &% outward to
§ and that the region from the surface to 53 could be considered part of the
body since in this model there is no fluid in it. I+ would seem then that
a way of accounting for some of the effects of viscosity Is to determine
6%, add this value to the airfoil ordinates, and recompute the |1ft values
by inviscid theory based on this modified shape. As we shall see, this is
an iterative process since the value of &* depends upon the value of the
surface pressures.

Because of the existence of the boundary layer and its accompanying
viscous dissipation, the flow in the immediate area of the tralling edge has
a lower stagnation pressure than that at the leading edge. Slince the
pressure just aft of the airfoil must be about the same throughout a plane
normal to the stream, there will be a region formed by the confluence of
the two surface boundary layers where the fluid velocity will be less than
free stream. This is called a wake, that Is, a region where the fluid is
relatively static with respect to the airfoil. Wakes fend ultimately to
diffuse and disappear downstream. A wake exists whether or not the boundary
layer(s) separate from the airfoil. The wake is of course much thicker if
there is separation.

Another way of looking at the effect of a wake is to note that in
moving over an obstruction the fluid velocity increases in proportion to
the vertical displacement of the obstruction at the particular streamwise
location. As the velocity goes up, the pressure must come down, according
to Equation (31). Then, having passed the peak of the obstruction, the
fluid begins to decelerate and the pressure begins to rise. Now, the effect
of the wake coming off the trailing edge of the airfoll is to prevent the
inviscid flow from returning all the way to its orginal free stream value.
See the skefch below. Consequently, the pressure at the beginning of this
wake region, point "a" on the sketch, is substantially lower than stagnation
pressure. Since the streamlines are essentially straight downstream of
point "a" it means the flow is more or less uniform and the pressure over
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the entire airfoil aft of point "a" is approximately constant at the low
value that exists at point "a". An integral of the surface pressures in the
streamwise direction Is now not zero. There is a finite drag, called in this
"~ case the form drag since it is dependent for its value on the form or shape
of the body.

To accomodate this situation within the bounds of our inviscid theory
we can proceed as follows: take as our body shape the airfoil plus §* up to
x = ¢. At x = ¢, assume the body continues to extend downstream by an amount

equal to
q 5 A
dx X=C ’

the projections from the two surfaces coming together in a point at this
location. By this device we artificially create the sharp trailing edge we
must have to satisfy the condition I'y = - Ty. Ty and I'k of course are then
placed at this ficticious trailing edge point. Next we compute the pressures
as a function of x (to x = ¢ only) in the conventional manner and then

employ (34) to obtain the |ift and (35) to obtain the form drag. In

essence then, we apply the pressures computed with the perturbed shape
(geometric plus displacement thickness, 8*) fo the actudl physical airfoil
shape at the same chordwise station. There is of course some error Involved
in this procedure because the shape of the pseudo-body aft of x = c may

cause the inviscid flow to decelerate somewhat more quickly than is actually
the case and some of this effect will be apparent in the pressures calculated
for points just upstream of the corners. In other words, it will fend to
make the computed drag somewhat lower than it actually Is. This effect is
not serlious as long as the wake is small compared with the airfoil thickness.
Unfortunately, the mode!l is not readily amenable to more sophisticated
treatments of the wake effect* and the problem of accuracy is probably best

* Other schemes for treating the trailing edge conditlion which come to
mind include (1) replacing the Kutta condition by the requirement that the
vorticity shed into the wake from upper and lower surfaces be fthe same (2)
extending the airfoil as a thin sheet along the wake centerline with the local
curvature determined from considerations of the velocity distribution in the
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* CONTINUED

wake according to viscous theory and the fact that the change in the fluid
momentum in the y-direction in the upwash and downwash (aft of the airfoll)

fields must equal the airfoil lift. One may also consider the superposition
of a vortex distribution related in some predetermined way to that found above
which will make the integral of the pressures over the pseudo-airfoil in the

drag direction equal to zero.

Callaghan and Beatty (Ref. 69) in their treatment represent the
displacement thickness with a source near the trailing edge. The pseudo-
body then never closes and the source strength must be chosen to yield
the proper wake thickness.

The very interesting approach used by Bhateley and McWhirter (Ref. 80)
to treat This problem is in some respects quite similar. They do not employ
the Kutta condition and, in addition, locate a source of undetermined
strength within the airfoil. They must therefore supply two additional
boundary conditions to obtain a scivable system. These are obtained by
specifying ftwo pseudo airfoil surface points just behind the trailing edge
on both the upper and lower surfaces. The condition of continued tangential
flow to the last surface element is satisfied at these pseudo boundary
points. This type of analysis permits them to treat with good accuracy
airfoils with slightly blunted trailing edges. These configurations are
currently of increasing popularity because they can yield higher lift
coefficients for the same angie of attack than the same airfoils with
sharp trailing edges.

Bhateley and McWhirter further apply this concept to airfoils with
partially separated boundary layers. Thus they are able to predict
the variations in Cy, C4q, and Cy with a up to agyp | quite accurately.
In their method the conditions of tangential flow are satisfied only on
that part of the body having attached flow. |f the boundary layer calculations
indicate that the lower surface flow will separate, this fact is ignored and
the displacement thickness is computed in the usual fashion. The two
addifional corner points are generated: one very close to the separation
point on the upper surface and the other at the trailing edge on the lower
surface of the pseudo body. The condition of continued tangency of the
lower surface flow at the additional boundary point is satisfied. In
specifying the additional boundary point aft of the separation point on the
upper surface the user must select, based on experience, other analysis, etc.,
the direction of the flow leaving the upper surface. No pressures are
calculated in the separated flow region. The pressure distribution downstream
of the separation point is assumed constant and equal to that value of the
pressure obtained by linear interpolation of the last two boundary point
pressures prior to the separation point.
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* CONTINUED

In this treatment, the separation point on the upper surface is considered
to be the upper trailing edge point of a blunt trailing edge airfoil. It
is easily seen, then, that the frailing edge thickness (and the source strength
responsible for it) of the pseudo airfoil grows rapidly as agyaLL 1S approached.
The pseudo airfoil begins to Take on the appearance of a blunt body. Blunt
bodies, of course, are known to have relafively high drag and relatively
low |ift so that it is easily seen how this approach can be used to account
for the change in airfoil behavior from a low drag, high lift, relatively
wake-free body at moderate angles of attack to a high drag, low lift, large
wake body at high angles of attack.

The success of such a technique is, of course, highly dependent upon
the accuracy with which one can predict the location of the boundary
layer separation point on the airfoil. For this purpose Bhateley and McWhirter
use a finite difference method in place of the momentum integral method
discussed here. Studies conducted by colleagues of the present authors
indicate that the momentum integral fechnique predicts increasingly more
rearward separation locations (compared with predictions of the finite
difference technique) as the angle of atfack increases. Thus the lifft
predictions will be foo large and the drag predictions too small at higher
angles of attack compared with those obtained using a finite difference
approach. On the other hand, the finite difference technique was found to
require 20 times the computing fime needed bv The momentum integral technigue.

The considerable success enjoyed by Bhateley and McWhirter in
predicting the pressure distributions on airfoils at high angles of attack
however seems to be more a function of the boundary layer routine they
use than because they use an embedded source and fwo of f-body tangency
conditions. One can obtain similar results, for example, by replacing the
Kutta condition by a requirement fthat the pressures at the upper surface
and lower surface separation points and all points inbetween over the aft
portion of the airfoil be the same, provided one does not then wish fo
construct a new pseudo body and compute from this a new potential solution.
The source and two off-body tangency conditions are needed to determine the
shape of the pseudo body aft of the separation point and thus to defermine
the potential flow about the pseudo body.

For airfoils with sharp trailing edges (and no boundary layer) Bhateley
and McWhirter chose the Kutta condition in one of two forms: the flow
107% chord lengths behind the frailing edge is constrained to move in a
direction which is an average of the airfoil surface slopes at the trailing
edge or the net vorticity at the trailing edge is required fo be zero.
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handled for the present in a semi-empirical fashion, with the correction
expected to be a function of angle of attack.

There is in addition to the form drag what is termed skin friction or
shear drag, drag that is due directly to the sliding of the air over the
airfoil surface. For well-streamlined shapes this accounts for perhaps 80%
of the total drag. Reverting to our concept of momentum transport across
layers of fluid as the drag mechanism, it Is reasonable to postulate that
the skin friction drag is proportional to the change in fluid velocity with
distance from the surface. This may be expressed mathematically as

- up du
Df = A dy|y=0 (36)
where A is the surface area and u is the coefficient of viscosity, a

property of the particular fluid which usually varies with temperature. A
very accurate relation for air is that due to Sutherland:

372 1 + 198
- T ref
W = Uret (Tref> T+ 198 ’ (3D

The values for temperature, T, should be given in °R. For Tref = 519°R,
Href = 373 x 107° sjugs/ft-secs.

* .CONT INUED

The potential solution employed by Bhateley and McWhirT?r represgnfs.
the airfoil surface by straight line segments and the vorfiC|Ty disfrnbufgon
by linear variations between values at the corner points. This seems a bit
strange in view of Hess's comment in Reference 82.

The troublesome trailing edge condition has also been the subject of
several recent, extended, -theoretical investigations. Spence (Ref. 70) presents
a very graphic explanation of the problems and argues that because of the
presence of a viscous wake the circulation around the alrfoil should be

multiplied by the factor o 4
1 - {—=){4n =—
4m Cp

For a typical two-dimensional value of Cp = 0.01 this factor is about .995.
Riley and Stewartson (Ref. 71) in examining the flow in the neighborhood of
airfoil trailing edges conclude that if the angle of attack is small and

the trailing edge angle is less than 1/Re¥ then the flow will be maintained,
without separation, up to the trailing edge. This is obviously a necessary
condition for treating the effects of the viscous wake in a more general

way since it establishes the point at which the flow leaves the surface
although not necessarily the angle at which it leaves or its radius of
curvature.
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I+ is apparent from an examination of (36) that the problem in
evaluating D¢ (and 6% for that matter) comes in finding

du
dy|y=0
as a function of position on the airfoil surface. One would | ike to integrate
the local value of D¢ over the total wetted surface to find the total skin
friction drag. Several things complicate the problem:

1. The thickness of the boundary layer can be shown to depend upon
the local Reynolds number, pV,/u.

2. The character of the boundary layer—whether it flows in well-
defined layers or lamina, or whether it flows in a more disorderly
or turbulent fashion which one can only represent rather
approximately—is alsoc dependent upon the local Reynolds number
and the condition of the surface. Further, the boundary layer
may change from laminar to turbulent during the course of its
travel over the airfoil.

3. The thickness of either a laminar or tfurbulent boundary layer
depends upon the nature of the pressures outside the boundary
layer. |f the pressures are such that the flow tends to accelerate
(high pressure upstream and lower pressure downstream) then the
boundary layer grows very slowly. [|f the reverse is true
(decelerating flow) the boundary layer grows rapidly. |t may
.even separate from the surface entirely.

The analysis of two-dimensional boundary layer flows to find §*(x)
and Cs(x) where Cg = D¢/4pV2(unit area) is considerably simplified if we are
willing to assume (1) the flow is incompressible, (2) there is no heat
transfer from the surface to the flow, (3) the boundary layer is laminar, and
(4) the pressure across the boundary layer is constant. With these assumptions
the mass conservation Equation (1) has the same form as in the inviscid
analysis. The x-momentum Equation (5) has a viscous stress term
32y
H a;r
added to it while the y-momentum equation reduces fo 9P/3y = 0. Thus the
equations for this analysis are written

9u v
_+_——:0
9x 3y (38)
Ju du 1 3P 32y
—t Yy — === —+
Yax Y 9y p 9x v 5?7

Since aP/3y = 0 , we can use the relationship between pressure and velocity
in the free sfream just outside the boundary layer to express

1 9P due

o X as Ug 3%

See for example Equation (30). With thls, (38) becomes
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4 (39)
u .,  du_ % a2y
Uax YV ay  Yegx *tV s

Now if we multiply the first equation of (39) by (ug - u) and subtract from
this the second equation we obtain

3 3 dug dug _ 3%y
™ [u(ue - u)] + 57»[v(ue - u)] + (?e - u) x + v T2 v 5;1 . (40)

The term dug/dy = O because ug does not change in the y~direction in the
boundary layer. |If we now define

6*

1
c g
—~
'
ol
o |
N
Q
<
-

(41)

and rewrite (40) as

9_ 96 3 38* due _ 3%y
or o [;e ay] + By [v (ug - u)] + ug ay ax - " VT o (42)
we can integrate with respect to y to obtain
8
3 | 2 d due du
= [ue e] + fo 3’5'»/ [v (ug - u)]g dy + ue 6% 3 =V Gy|yeg- (43

Note that 0
§ .5 3[
8%u . _ |3 _8u
Ldey"“[ylFG 8vv=0]

and by the first equation of (39)
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Thus (43) is

e , 26 + §* dug

= T (44)

_y, %
u- 9

We should note that (44) is only an approximate description of boundary layer
flow because the process of infegration used to obtain (43) in effect smooths
out local departures from mean values. Further, although we intuitively
understand what we mean by the outer edge of the boundary layer, the fact is
we have never defined this value of y precisely. The approximate method,
however, gives results which are within a few percent of those obtained with
exact solutions in the few cases where the latter are known. For this reason
and the ease with which it is applied to airfoil-like bodies, we shall find this
approximate technique extremely usefui. Empirical corrections to improve

the agreement with experiment can be applied at the conclusion of the
calculation if desired.

To complete the solution of (44), that is to find 6*(x) and u %%-yzo (x)
which we need to calculate the form drag and the skin friction drag
respectively, we need an expression for u{y). We shall assume, following
Pohlhausen, that we can represent this function by fthe polynomial

%g-= An + Bn? + cn® + On* (45)
where n = y/8. We choose this polynomial because it is the lowest order
polynomial which can represent the essential character of what we know of
boundary layer flow and is the highest order polynomial for which we can
easily evaluate the constants. The constants are found from the boundary
conditions:

d du
at y =0, u=0; 3% = - Pug 5?9

(46)
= = 3“ = . 32U =
Yy 6, u Ue; 57' 0; 5y7 o .
The result is that
1 62 dug 1 §2 dug
A=2+———-————, B = - -——a——
6 v dx Z Vv dx (47)
= - 1 2 Ve Zq - 182 due
C 2+ 55 ac D 1 3RV -
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Substitution of (47) into (45) yields

O

= -+t

|

Ug

2 du
a—xi(n - 3n?% + 3n® - n")

_ 142 U | 62 due ] 62 dug | 4 I
e~ [2+6v R A "o K vl 5 AL Ll ~a LA

clc 2
Q
d

due/dx of course is found from the potential, or inviscid, solution. Equation
(48) may be substituted into (41) to obtain

(49)

6= 5137 182 dug 1 [82 due)?
= 315 - 35 v dx ~ 9072\v dx
au . ,
The local shearing stress on the surface, u 371y=0 , is simply

Hle 1 8% due
5 [2+g;)—— |- (50)

To complete the numerical evaluation of 6% and the shearing stress,
Ty=0» We substitute (49) and (50) into (44) to obtain

[=%

37_dé _
15 dx

382 dug d§ _ 58" due Y2 d§ _ 1 §3_d2ue _ 28"  due d2ue
945 v dx dx 9072 v¥ \dx dx 945 v dx? 9072 v* dx  dx?

+

ug [315 ~ 945 v dx ~ 9072 \V dx dx  ug |10 T T20 v dx |dx

u

X
37 _ _38% dYe 56" fdue)2|ds 1 62 d’ue  26% dug dug
315 945 v dx 9072 vZ \ dx dx 945 v dx2 ~ 9072 vZ dx dx2?

‘ 28 |37 _ -1 §2 dug 1 [82% dug Y2 | dug L8 |3 82 due | dug
ue | 315 945 v dx 9072\ v dx dx ueg |10 120 v dx | dx

_ M 1 62 due
[2 + 5% . (51)

+ 28 |37 1§52 due 1 (ﬁ d“e)2 dug 5_[;_ 162 due] dug

e

Q

N 1382
pUe(S [2+6\)

or

Q
X

pugd
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Equation (51) is a highly non-iinear first-order ordinary differential equation
with & the dependent variable and x the independent variable. Note that ue,
dug/dx, d2ug/dx? must all be supplied as data from the external, or potential,
solution and the value of each of these quantities depends upon the particular
value of x. The equation may be solved by predicting dé/dx, solving the
resultant polynomial for § and then checking to be sure that the predicted
value of d&/dx is sufficiently close to that found. [If not, the process is
repeated until sufficient accuracy is achieved. In the inferests of speed

and accuracy the solution is best obtained on a digital computer. The solution
will be in the form of & for each value of x along the chord for each surface.
By the use of the first equation of (49) and by (50) one can find then 8% (x)
and Ty=g (x). Schlichting (Ref. 65) gives the more common evaluation of (51).

As a check on the solution technique one can look at (51) as applied to
a flat plate at zero angle of attack. Under these circumstances (51) reduces

to
37 d8 - _2 (52)
315 dx  puegd >
This has the solution
82 _ 630 xu
" 37 pug

or _ 5.84 x _ 5.84 x

§ = = . (53)
‘}9295 \IRe
m P
This overestimates the value of & by about 1.8% compared with more exact
solutions. &* is therefore also high by about 1.2%.

The effect of dug/dx is to reduce § for a given x when dug/dx is
positive and increase it when dug/dx is negative. Both types of behavior
will be present on airfoils. From the leading edge to the crest on the upper
surface of the alrfoll dug/dx will be positive. From the crest aft, dug/dx
will be negative. The boundary layer will therefore be very thin up fo the
crest and will begin to grow rapidly downstream of that point.

If the dug/dx Is sufficlentiy negative and persists for a sufficient
extent of x It will cause the boundary layer to leave the surface. This
condition is manifest to the pilot as a stall or loss of Iift accompanied by
a sharp increase In drag. Usually, the flight Reynolds number, airfoil
geometry, and surface condition are such that the boundary layer becomes
turbulent before separation occurs so that we will postpone our discussion
of how to calculate the aerodynamic characteristics near maximum lift.

Assuming we now have the value of 8*(x) as calculated above, how do we
use It to correct the surface pressure values obtained from the inviscid
computation? By adding 5*upper surface To the actual upper surface
ordinates and 6% |ouer surface T© Tthe actual lower surface ordinates we
obtain a new fatter airfoil. We submit these new ordinates to the inviscid
computation procedure and obtain a new pressure distribution. If dug/dx
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is substantially different from what we used to compute 8*(x) we must use

the new values of due/dx in a predictor-corrector scheme to compute a new

8*(x). The process must be repeated until the values of dug/dx obtained from
the inviscid computation agree with what we used in computing §*(x). Generally,
as speed and aircraft size increase, fewer iterations will be required ‘o
achieve satisfactory agreement because the boundary layer will be proportion=
ately thinner.

As we have noted there are a number of things which can cause a
laminar boundary layer to become turbulent: existence of a large Reynolds
number, surface roughness, and to some degree the sign on due/dx. Because
wings on light aircraft will usually experience a turbulent boundary layer
on at least some portion of their surfaces it is necessary to examine how
the procedure to calculate &% and Ty=g are altered for this conditon and
how one determines when to change from laminar to a turbulent calculation.
It should be recognized at the outset that turbulent motion is a very complex
phenomenon, never successfully treated in a completely analytical fashion.
It is necessary therefore to employ rather crude analytical models or
semi-empirical correlations in order to retain the usual equations of motion
(38) as the describing equations of the fluid behavior. Following this
approach we observe that Equation (44) may also be used to represent turbulent
boundary layer flow provided we use a suitable relation for skin friction in
place of

au
H Byly=0

and a consistent expression for u(y). One empirical formula for Ty=0 which
finds considerable use is that due to Ludwieg and Tilimann (as quoted in

Ref. 65}): 0. 678 &%
ou \0.123 x 10 P70 E

T,-0 =
y=0 Ued 0.268
v

The reletion for the velocity profile commoniy used in related studies is

1
o
Ug * ({(r) , (55)

where n is between 4 and 6, but is usually taken to be the latter value.

(54)

The use of (54) in (44) still leaves the equation non-integrable because
an explicit relation between §* and 6 has not been given. This could be
developed from the definitions of 6 and &%, (41) and (55), or the problem
skirted by proceeding as follows: Multiply the second equation of (39) by u
and then integrate with respect to y. We obtain what might be termed an
energy integral equation

1 d 3 Ty=0 3 u
— =— lu 6**] = f Ly S VI (56)
ug dx [ e pul ay \Ug
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analogous to the momentum integral Equation (44). The name of course refers
to the fact that momentum times velocity has the units of energy. Note that

§ u 42
§¥* = j o U1 - mA dy . (57)
0 e e

I+ has been found experimentally that there exists a unigue relationship
between 6%/6 and 8**/0 which can be expressed as

8%

§ex 1.269 5

B R (58)
‘é— - 0.379

Experiments have also led to the conclusion That

8

Ty = I -2

,[ -159-§—»(£—) gy = Q56 % 1077 (59)
0

pug 9y \ug ugH
Y

Substitution of these experimental results, (58) and (59), into (56) yields

1.269 u? S
1od |7 e gl 0.56 x 1072 .
ug dx | &% g 379 | fuef\ 7

6 v

while (54) substituted into (44) gives

-0.678
g9 , 26 + &% due _ 0.123 x 10

dx ue dx - (H_\?)_B_)O-ZSB

Simultaneous solutions of (60) and (61) will yield 8*(x) and 8(x).
When these results are substituted into (54) one has Ty=g (x). The skin
friction drag i< then computed by integrating Ty=0 {x) over both surfaces:

C C
Df = f T, =g (X) dx + [f Ty=0 (x) dx] . (62)
0 v upper surface 0 lower surtface

The dimensions of Dt are force per unit span. As noted previously, at low
angles of attack, the drag as computed by (62) should be about 4 times that
found by (35). As o increases, the form drag tends to predominate. The

total drag of course is the sum of the drags calculated from (35) and (62).

ol
g

The correct expression for T,.q in (62) depends, as has been indicated,
on whether the boundary layer is laminar or furbulent or some combination thereof.
Generally one would expect that the boundary layer is laminar over the forward
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portion of the wing and then changes—goes through what is called transition—
to a turbulent boundary layer. Thus, Equation (50) would give the correct
expresslion for 1 =0 upstream of the transition point and (54) gives the correct
expression for 1,-0 downstream of this point. Since the boundary layer

already has a finite thickness at the transition point, one chooses as a
starting point for the turbulent calculation that point which will give the
same § at the transition point as the laminar solution beginning at the

leading edge. The laminar values of T,=9 and 8% are used up to transition

and the turbulent values downstream. ¥hey are approximately the same at
transition.

The beginning of transition has been found to occur at a Reynolds number
between 3 x 10° and 4 x 10%. This is a very substantial range. As a point
of reference consider that the Reynolds number per foot of chord for a
airplane flying at 200 ft/sec at sea level is 1.275 x 10%. Transition could,
according to this criterion, occur anywhere from 4" from the nose to 3 ft
from the nose. Since the chord for most light aircraft is at least 4 ft,
the boundary layer on the aft portion of the wing will always be turbulent.
Whether the transition begins 4" from the nose or 3 ft from the nose depends
upon such things as surface roughness, free stream turbulence, and dug/dx.
The latter influence, however, is the only one which can be determined
a priori, that is, before the wing is built and flown under particular
conditions. It is, therefore, the only one we will attempt to evaluate.

A laminar boundary layer is said to be unstable—that is, it tends to
become turbulent—when a velocity disturbance in thls boundary layer can
grow. Tollmein was able to show that a necessary and sufficient condition
for neutral stability of disturbances in laminar boundary layers is the
existence of a point of inflection in the boundary layer's velocity proflie,
uly).

Using a sixth order polynomial to represent the velocity profile,
Schlichting and Ulrich were able to plot a relationship between the value
of ugd*/v for which an inflection point exists and 62dug/vdx. With this
plot one can take the values of §, &%, ug, dug/dx, and v and determine
whether or not the boundary layer is unstable. The precise distance between
the onset of transition and the point of neutral stability as determined
above depends upon the rate of amplification of disturbances in the boundary
layer and consequently upon dug/dx in that region. |t has been found that
plotting experimental data on a graph where

Uee Uee
V' J +ransition v

neutral stability

is the ordinate and

X
+ 2 du
f r .e_—edx

vV dx
Xn.s,

Xtr = Xn.s.
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is the abscissa leads to excellent correlation of the data. For a laminar
boundary layer we know 6, ug, dug/dx, and (82/V) (dug/dx) as functions of x.
We also know (ugh/V), o, because we know the relationship between 0 and &%,
Marching downstream of the neutral stability point we can easily find a
ugh/Vv and an xtr - xp.s, for each point. The other data then permits us

to locate a polnt on the graph for each value of x. The first point which
falls on or above the data correlation is taken as the x-location for which
transition has taken place.

In addition to the change in &% and Ty=0 as one goes from laminar fo
turbulent boundary layer another type of behavior associated with boundary
layer flows which significantly affects the |ift, drag and moment character-
istics of the airfoil in boundary layer separation Is usually identified by
the disappearance of the local skin friction, Z.e. when

du =0 .
dyly=0

The geometry of very thin airfoils is such that regions of laminar separation
or separation followed by reattachment confined to the front half of the
airfoil are possible at moderate angles of attack. However, light aircraft
operating at moderate Mach numbers can be expected to employ airfoils of 12%
or greater thickness for which this type of phenomenon is not fo be expected.
The separation characteristic of thick airfoils is a turbulent separation
from the region of the trailing edge. Thus, if one terminates the calcu-
lation of 6* and T,-g at that angle of attack for which Ty=q = 0 over a
significant portion of the airfoil, he is reasonably assured of having
closely approached Clpax- This is about the most one could expect of the
procedure outlined above.

Perhaps it would now be appropriate fo review briefly and comment upon
the procedure for estimating the aerodynamic characteristics of airfoils
as developed up to this point.

1. We first locate the vortex filaments, taking care that we space them
sufficiently close together to represent the surface accurately. This is
particularly important in regions of high curvature and/or regions where the
surface slope Is significantly different from the free stream flow direction.

2. Equations (29) are then solved for a particular angle of attack to
obtain the values of all Ty. These values are then substituted into (19)
to obtain the net induced velocities and the surface pressures computed
from (33),

3. The |1ft and drag are evaluated by (34) and (35). The drag at this
point should be zero.

4, ug(x) is evaluated from (32) for both surfaces. Data smoothing
procedurcs are employed fo insure that the results represent physical reality
as closely as possible with as few inflection points as possible. dug/dx
and d?ug/dx? are then calculated numerically.
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5. &6(x) for both surfaces is then found from a solution to (57).
8*(x) Is obtained from (49) and Ty=0 from (50).

6. The location of transition is Identified and the turbulent boundary
layer computation begun using (60) and (61) and then (54). At the conclusion
of this process one has complete values of §*(x) and Ty=o(x) for both
surfaces.

7. &*(x) Is then added to the physical ordinates of the airfoil along
with artificial trailing edge found by extending the chord

6*<c>/91
dx

8. The previous seven steps are then repeated for the new ordinates.

x=c °

9. The new value of dug/dx is compared with the value obtained from
step 4. |f they differ by more than a few percent, we modify our estimates
of 6*(x) according whether dug/dx seems to favor larger or smaller values
of &%.

10. The process is repeated until the final value of dug/dx would give
the same 6*(x) as used in the inviscid calculation. Obviously, care must
be taken to insure that adequate precision is maintained during such an
extensive series of computations, else the resulting numbers are meaningless.

11. The procedure is valid for a Mach number of zero. Since most |ight
alrcraft operate at Mach numbers not far above zero, the simple Prandtl|-
Ghauert correction to the pressures for Mach number effects is usually quite
adequate:

(Px - Poo)Mzo
V1 - My

Py = P_ + (63)

12, The corrected pressure is then applied to the physical boundaries
of the airfoil to obtain the |ift and form drag according to (34) and (35),
The skin friction drag is computed with (62) using the most updated value of
Ty=0{x)
y=0%%7"

13. The pitching moment about the leading edge can be computed by
integrating the product of the pressure forces and the distance from the

nose
- -1 dy i -1 Qy_|
M fP(x) X Cos [Tan dx‘x]dx + fP(x) y sin [Tan ™ ><]dx. (64)

There will also be a small contribution to the moment from the skin
friction forces but these are (a) generally In the chordwise direction and
(b} the moment generated by the friction on the upper surface opposes tiat
generated by the friction on the lower surface. As a result the net
conftribution is generally small enough to neglect.
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EXTENSION TO THREE DIMENSIONS: THE FINITE WING

The theoretical procedure described above provides a means for estimating
the aerodynamic characteristics of a sectlon of an infinite wing. Real wings,
of course, have to have ends and frequently, for reasons that will become
apparent as the discussion proceeds, are tapered, twisted, and change airfoil
sections with changes in span locations.

Some means must therefore be found to account for such influences in
determining the aerodynamic characteristics of complete wings. The principal
considerations in wing design are (1) low drag for good performance, (2) light
weight with adequate strength for good payload capacity, and (3) fairly
simple structure with few changes in shape for low cost in manufacturing.

We shall be concerned here with means for calculating the |ift, drag and
moments of wings which we will assume satisfy the latter two criteria. We

will also limit our consideration to unswept wings of moderate-to-high
span-to-chord (aspect) ratio. Further, in order to keep the computation fo

a reasonable length we would |ike the technique we employ to use as much of

the previous result as possible. In order to do so we ask the question,

what are the effects of ends, twist, and taper? |f an untapered wing has

the same airfoil over its entire span then it would seem reasonable to conclude
that, at least near the center, twisting the wing has the effect of changing

the local angle of attack. It will be recalled that the two-dimensional
calculation is carried out for specific angle of attack. Generally, both
|1f+ and drag increase with increasing angle of attack. Twist will therefore
change the local [ift and drag values.

The existence of a wing tip permits high pressure air from the lower
surface of the wing to flow up around the tip to the low pressure regions
on the upper surface. The result is that the |ift in the tip regions is
reduced and a vortex filament is created. This filament begins near the
tip and extends downstream in a plane parallel fto the fuselage. The fact
that in theory vortices must be closed or infinite led to the thought that
since a vortex is actually observed extending rearward from the tip regions
of lifting wings, some sort of vortex system must also extend from tip to tip.
If this is true, perhaps one could actually represent such a wing by a series
of "horseshoe'-1ike vortices which "roll up" in the tip regions tc form a
single vortex extending to infinity. A series of horseshoe vortices with
different strengths would enable one to represent a variety of lift distri-
butions on a wing. If the wing has a moderate-to-high aspect ratio, little
or no sweep, and moderate dihedral then it would seem that one could take the
various vortex filaments as being co-linear with lifttle error. Such an
assumption, the so-called Iifting-1ine theory of Prandt!, obviously leads to
fewer mathematical difficulties than having to consider a chord-wise lattice
of vortices or a |ifting surface. Because most light aircraft wings meet the
criteria for applicability of the lifting Iine theory and because we intend
to use the theory only fto modify our 2-dimensional results, we expect the
procedure to give us accurate results.

I+ will be observed that a horseshoe system with the trailing vortex's
velocity moving inboard over the upper surface and outboard under the lower
surface induces an upwash component ahead of the wing and a downwash
component behind the wing. This combination of upwash ahead and downwash
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behind the wing is, in effect, a change in local angle of attack in so far
as the flow facing a section of wing is concerned. The finite span of the
wing can therefore be thought of as producing the same effect as does
geometric twist. For consistency it would seem to be convenient to attempt
to represent the effects of taper also as a change in local angle of attack.
If we are successful in this endeavor, we have reduced the entire procedure
for calculating the |ift, drag, and moment characteristics of complete
wings to one of (1) finding the effective local angle of attack by the
lifting line theory, (2) determining the two-dimensional or section charac-
teristics corresponding to these effective local values of a by reference to
equations or tables computed by the methods discussed above, and then (3)
integrating these section characteristics over the entire wing area to
average the values,

In current designs, wings are not free entities but are attached to
large structures such as fuselages. |t is important, therefore, to model
the fuselage-wing junction region in such a manner that the effects of its
presence can be handled within the framework of a method to calculate finite
wing characteristics. We do this by mathematically transforming this region
of the fuselage into a part of the wing. Other examples of the use of
mathematical transformations to simplify the analysis of complex problems
are well known. Problems involving flow through pipes, structural analysis
of tubes, etc. become much simpler when transformed from Carteslan or
rectangular coordinates to cylindrical coordinates. Differential equations
become algebraic when transformed from the time domain to the frequency
domain. Complex shapes, such as airfoils, can be transformed info circles
about which the flow behavior is well known. The flow at any point about
an airfoil can then be found by locating the equivalent point on the circle.

Generally, in selecting a ftransformation we seek one which either
simplifies the mathematical representation of a physical situation or, as
in the present case, distorts a complex shape into a simpler shape for
which the physical phenomena are well understood and easily analyzed., We
then go through an inverse transform to find how the well-understocd
behavior distorts in going back to the original physical situation. Devising
a suitable transform is usually a frial and error process, guided by
experience, skill, and to some extent, luck., Certain mathematical require-
ments must also be met, dependent upon the framework in which the transform
is used. The transform used here was devised by H. Multhopp (Ref. 51).

The thought processes fol lowed by Multhopp in devising the transform
shown below for elliptical cross-section fuselages probably included these
elements: Under the Joukowski transform,

=z 4+,
z
a circle in the z-pilane with Its center at the origin *transforms to a
flat plate along the £-axis in the Z-plane for positive values of c2. |If
one takes c? = -1, then
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and the circle (of radius 1.0) transforms into a flat plate along the
n-axis In the g-plane. From this result one concludes that a similar
transform, suitably modified fo account for elliptical fuselages and
variable placement of the wing with respect to the origin, should produce
the requisite figure.

Consider also the ellipse shown in the sketch below:

2

The propertles of an ellipse are such that

AZ_BzzeZ’

x4 ¥2 = .,
Az B?
" FF+FF =2
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From the last statement it follows that

20 = N2+ (h - e)2 +Vy2 + (h + e)?
from which one can obtain
A% = y2 + h? + &2
or
82:y2+h2
For points outside the ellipse we can generalize this by writfing
a? = y2 + h? + e?
b2 = y2 + K2

2 - 42 _ p2

I+ has been a feature of textbocoks on hydrodynamics for some years
to show that the equation for mapping an ellipse in the w-plane into a
circle of radius 3(A + B) in the z-plane is

Z:,‘z(w+'m2-ez)

Thus to map the ellipse into a flat plate we write

c=z+&(A+B)2:%(w+,/——wz_ez)+%<A+B)2<m-/w’-ef)

z wz - wz + e2
S AT =B (4 VT s ) B () T
282 282
2 _ 2 2 2 2 _ np2 2 2
_[A B + Ac + ZAE + B W + A 2B + A + 2A§ + B (/wz - e?)
2e? 2e 2e 2e

2e? 2e?

2
N (ZA + 2A8>w . (—ZAB - Bz>,/(;‘i‘_—ez‘

= A w - B m
A-B A-1B

which is the form employed by Multhopp.

The figure below shows how the trace of the wing-fuselage combination in
the y-z plane transforms from the physical u-plane to the u-plane according
to the relation

U=——L—[A'u - B'Vy?2 -A'2+8'2] ; (65)
Av - Bl
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We use this transformation because it changes an elliptical fuselage intoc a
thin vertical |lne which then provides no resistance to the vertical or
induced component of flow over the wing. As we noted above, it is these
vertical components which determine the magnitude of the local angle of
attack. In essence, then, the transform distributes the flow components
due to the fuselage over the span of the distorted wing. A similar
transformation U = u + R%/u is used for circular fuselages. More complex
shapes can be handled in the same fashion through the use of a suitable
transform. By writing u and T as complex variables

u=2z+1iy=acos P+ ibsiny
(66)
U=z + iy
and making the following definitions
a= %[@+ (h - e")? + Yy? +(h + e')z]
b = Va2 - e'2 (67)

e = /;}2 -B'% = /52 - p?
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then
= — [A'u - B - e'z]
A' - B'
(68)
=1 [A'u—B"’uz-a2+b2 .
A' - B!
But
u2 - a2 + b2 = a? cos? ¥ - b2 sin? Y + 2abi sin y cos § - a® + b?
= a(cos? Y - 1) - b%(sin2 y - 1) + 2abl sin Y cos ¥
(69)
= a2 sin?2 ¢ + b% cos? ¢ + 2abi sin P cos V¥
= (b cos Y + la sin y)?
therefore,
T=—>t | A'w-8"(bcosy + lasin lp)]
A' - B' L
=_1___-| ! - 1 - 1
PUBSCY bA z +iA'y - B'b cos ¥ -~ IB'a sin w] (70)
i B - -
=1 __ J(A'z - B'b cos ¥) + I(A'y —=Blasin}|=272+1y .
Y
A' - B' L
Comparing real and Imaginary parts, one finds that
_=_;_ ' - ]
Y o [A y - B'a sin W] . (71)
Since
y =bsiny=va? -e'?siny
+hen
sin ¥.= e .
One may therefore write for y
T=—Y_ A" -B' 2 . (72)
Y A' - B! [ VAL ]

This relationship determines how points along the span in the physical or
u-plane fransform into the T-plane.
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We seek now to find how the flow in the neighborhood of the fuselage
influences the fiow direction and magnitude at each station along the wing's
span. The real part of du/du in effect distributes the vertical components

of the fuselage flow along the wing. |f ag is the fuselage angle of attack
in the TU-plane then the induced* upwash along the span is given by
poly) = |R AT - 1]1ag . (73)
(R ] e
Because of the nature of the transformation ag will have the same value in
either plane.
Now —
v __ 1 |- __Blu | (74)
du A' - B! Yu?2 - a'2

The real pérT of du/du is, of course, its vertical component:

~

du _ 1 Al - gt @_cos Y + ib siny
du A" -B' | b cos ¢ + ia sin Y
-1 At - pr e cos ¥+ ib siny)(bcos ¥ - ia sin ¥
A' - B! | (b cos P + ia sin Y)(b cos Y - fa sin y)
e R du _ 1 A' _ B! ablcos? Y + sin? )
*° du A' - B! | b2 cos? Y + a? sin? Y
i (75)
=1 |ar-nB' ab
A' - B! b21—ﬁ+322
L b? b2
i a8
= _] A' - B! va? - e'?
A' - B! 12,2

1 +
(a2 + e'2)?

I the wing is very thick at its junction with the fuselage then the
actual Ao obtained is less than that predicted by (73). |t has been suggested
that one should therefore reduce (73) by a factor T, ftaken as constant across
the wing span, which is the ratio of the body cross-sectional area above
and below the wing to the total frontal area of the body. The area of the

* The amount by which the flow angularity exceeds that due to geometric

inclination.
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elliptical fuselage is of course TmA'B', The segment of the fuselage which
represents a continuation of the wing has an area of approximately 2ygst oot-
T=1-2Yo root (76)

TA'B!
and a more general expression for (73) is

Aaly) = T og [3 ‘3—E - : n

We could also have written (77) as

Aaly) = ag [ (78)

|0
o_'o.
(=8 []
~—
-]

1
—_

if we had known how to write

explicitly. However, by comparing (77) and (78) we find that as a first

approximation
R du R du
- = =1 +T7T1= -1 . (79)
( d“)T [ du ]

In additlon to the flow angularity induced along the wing by the presence
of a fuselage there is also a flow angle (a downwash) induced by the lift
assoclated with a finite wing. This angle in the U-plane is written @;(y).

We seek now to transform this angle into the u-plane so that we may see more
easily 1ts Influence on the actual |ift and drag of the local airfoil
section. We note that the induced angle in the U-plane multiplied by the
real part of the change in U for a given change in u is just the induced
angle In the u-plane. Thus for thick airfoils

ajly) = T [B- %%]T . (80)

This angle Is negative in the usual sense. The geometric angle of attack of
the wing can be given in terms of the angle of attack at the root and the
twist relative to the root angle as a function of span: agly) = ag + e(y).
To the geometric angle we must add flow angularities due to body upwash,

ag, and due to wing lift, a;. The result is that for thick wings the
e?fecfive section angle of attack in the physical plane is given by

— 2 t
agly) = an + ely) + [“B - ai(V)} T+ (1 - ——Xgu—QQZt)

TA'B!
(81)
a
. 1 A' - B! vaZ — g'?2 -1
A' - B! |+ e;z 2
&y
(a? - e'2)?
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with

a=1% [‘?+ (h - A'? —-B'z)2 + 1@2 + (h + A'2 - sz)z]

Note that with the exception of T;(y) all the quantities in (81) can be
determined from the geometry of the design.

For the evaluation of aj(y) we employ a variant of the technique used
to determine the inviscid velocity distribution about an airfoil section.
Consider the sketch below. y

yd

\
dI
-—_dy

Recall also that we had indicated previously that we would represent a wing
by a group of horseshoe-like vortices which physically "roll-up" at the tips
to form single trailing vortices. Thus the circulation I' will vary along the
span, being symmetrical about the point 0 and falling to zero at the tips.
Between the point y and y + dy on the span the circulation decreases by an
amount

_.(Edy .

dy

Ideally, a tralling vortex of this strength springs from the element of span
dy. There is therefore a sheet of frailing vortices extending across the
span and the induced velogity normal to the free stream velocity must be
obtained as the sum of the effects of all trailing vortices in this sheet.

To determine the form of the expression giving the sum of the effects
of all trailing vortices consider first the case of a wing represented by
a single horseshoe vortex. We see from Equation (15) that the velocity
induced by a vortex at a point depends upon the distance from the point
to the filament. In the following sketch the distance from P to the wing
fllament is PM. Now in Equations (15) the total velocity, Yu® + v°, is
normal to the Ilne, vx2 + y2, connecting the filament to the point at which
one desires to know the velocity. One could therefore write

JiTivi-e —L (82)
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It seems reasonable to conclude that at any point the velocity Induced
by a semi-infinite vortex filament is haif that induced by an jnfinite vortex.
Let us ask then what is the velocity induced at a point by a small segment
of a vortex filament. ,Z We know that the velocity depends upon the distance
from the segment to the point. If we call x* + y? = r?, then this distance
from the vortex segment at A' is r/sin 64 where 8y is the angle PA'™ in the
sketch below.

Substitution of this expression for distance intoc an expression for the
velocity induced at a point, say in the XOZ plane, by a segment of a semi-
infinite vortex can be seen to yield

dv = L.sin 8 45 . (83)
4mr
Integration of (83) gives
/2
Vy = L |- coso | =L cos 81 . (84)
4m 84 4

Calculation of the contribution to the velocity from the part of the filament
beyond 0 yields

=L cos 6, (85)

v
2  Ax
so that the fotal induced velocity is given by
r
= =— + ) . (86)
v 4 {cos 01 + cos 82

tn the notation of the sketch, the downwash velocity at point P (normal to
PM) may be written
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v =_T cos PA'A + cos PAA']. (87)
4mPM

I'f we now assume that point P is located along the span at, say, vy,
then the distance from y{ to any other point is y; - y. Further, if T is

variable along y then
b/2
T = J{ %I-dy.
-b/2 &Y
One may therefore write the induced velocity at some point y1 along the span

as
dT’

VOL[(y1)=1— 0/2 Y1 —

am

In the U-plane this Is simply

b/2 4L 4y
q; (7)) = —— dy (88)
amvo JLb/2 Yy - ¥
I'f &;(yq) Is to be In degrees, we multiply the right hand side of (88) by
180/m.

Unfor